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Abstract: The equation of the precessional motion of a spinning top and the equation of the
Larmor frequency require an additional factor of 2. The longstanding errors were caused
by the wrongful treatment of a variable in the numerator of a differential quotient as
vanishing although its true value was zero. As a consequence, one finds that, when doing
things correctly, the dimensionless Landé factor of the electron is reduced to unity (instead
of 2 in magnitude). Thus, there is no gyromagnetic anomaly of the spinning electron. The
disputed result of Einstein’s and de Haas’ famous experiment is thereby vindicated. The
results of experiments with macroscopic gyroscopes confirm the long-standing error, even
though the measured angular velocity seems to match that predicted by the erroneous
equation. To assess things correctly, unavoidable nutations must be considered
(accompanying any precession of macroscopic objects), which result in a significant
reduction in angular velocity. Therefore, the measured angular velocity of macroscopic
gyroscopes is expected to fall short of the correct equation yield for purely precessional
motion.
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I. Introduction

In textbooks, the precession velocity of a spinning top is given by the equation [see for
instance: W. Thomson (Lord Kelvin) / P.G. Tait (1879), Section 105, pp. 79/80; H. Crabtree
(1909), Art. 34, Fig. 20, pp. 37/38; A. Sommerfeld / F. Klein (1910), Chapter IX, § 1, Fig.
113, equation (1), p. 762/763; L. Graetz (1917), Chapter 2, Fig. 40, p. 47, Section 105, pp. 79,
80;  J.L. Synge/ B.A. Griffith (1942), Section 14.3, p. Fig. 151, p. 428; P.A. Tipler/ G. Mosca
(2008), Chapter 10, Fig. 10-23, equation 10-19, p. 340; R.W. Pohl (2017), Chapter 6.11, Fig.
6.35, pp. 118/119]:
(1)

 

 
Omega is the angular velocity of precession around the vertical z-axis, Jspin is the angular
momentum of the top around the axis of rotational symmetry (spin), T0 is the magnitude of
the horizontal torque acting on the top in a direction perpendicular to the spin when  Jspin

forms a 90° angle with the vertical z-axis, and when the torque T is at its maximum value.

If the spinning top is a permanently magnetized bar (magnetized in the direction of its axis of
rotational symmetry, and hinged at its center of mass at the origin of coordinates), and if that
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bar finds itself in an external, homogeneous magnetic field B that points in the direction of
the vertical z-axis, the angular velocity of precession around the vertical z-axis is, in text
books, given by:
(2)

 

 
The parameter µ is the magnetic moment of the magnetized bar and B is the external
magnetic field.

However, equations (1) and (2) are physically incorrect by a factor of two. This is
demonstrated in the present study.

II. A first erroneous attempt of deriving the common equation of precessional motion 

1) A spinning bar magnet (permanently magnetized in the direction of its axis of rotational
symmetry, and hinged at its center of mass at the origin of coordinates) is assumed to perform
a precession around the vertical z-axis. This precession is brought about by a torque T caused
by a homogeneous magnetic B-field that points in the vertical z-direction. Thus, torque T has
a purely horizontal direction. In textbooks, (2) is then derived from reflections of the
following kind [the example is taken from E.M. Purcell / D. J. Morin (2013), Appendix J
(Magnetic Resonance), p. 821]:

“In a short time Delta t, the torque adds to the angular momentum of our top a vector
increment Delta J in the direction of the torque vector of magnitude µB sin theta Delta t”.

This statement is incorrect, simply because Delta Jhoriz or (dJhoriz), that is, the magnitude of
the generated angular momentum in a horizontal direction, is zero, and not just vanishingly
small (“increment”). In other words, Delta Jhoriz is not equal to µB sin theta Delta t. Thus,
dJhoriz/dt, too, is zero. In greater detail:

Although torque exists in a horizontal direction [see Purcell/Morin (2013), Fig. J.1 on page
822], it does not produce angular momentum in the direction of the torque once the spinning
top precesses steadily around the vertical z-axis (which is presupposed to be the case in the
situation depicted in Fig J.1). In other words: The angle between the internal axis of rotational
symmetry of the spinning top and the vertical does not change, not even a bit. Moreover, the
magnitude of the total angular momentum Jtot remains unchanged over time (Jtot_2=Jtot_1).
Therefore, Delta Jhoriz (or dJhoriz) is zero for the spinning top, and not vanishingly small (as
textbook authors assume).  

One should note that, when doing things correctly, the direction of the vector dJhoriz is not
expressed by reference to a stationary Cartesian system of coordinates; instead, the direction
of the vector dJhoriz is rotating with time, as does the torque Thoriz. As a consequence, Jhoriz is
capable of undergoing changes in magnitude, but not in direction. Only then is it certain that
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any change in the vector Jhoriz is caused by a torque, and not by something else. In other
words, only then is it that we are allowed to postulate Thoriz = dJhoriz/dt .

There exists an analogy with the Lorentz force on a moving, charged particle. The Lorentz-
force makes the particle move in a circle with radius r, but it does not increase its kinetic
energy Wkin or its linear momentum P. This is despite the fact that a radial force Fr= dPr/dt is
constantly acting on the particle in a radial direction. The absence of an increase in kinetic
energy can easily be explained by the fact that the two vectors F and ds are always at right
angle with respect to each other, so that their dot product (yielding work dW) is zero at any
time. It’s not so clear why the particle’s momentum, too, remains invariant. Given that a
radial force Fr is active all the time, the quotient dPr/dt should be different from zero, that is,
as large as Fr. Obviously, a radial counter-force is constantly acting on the particle. That
counter-force is the “force” of inertia, or the centrifugal “force”. The same is true for a
gyroscope in stationary precessional motion. A horizontal torque generated by a magnetic or
gravitational field is constantly acting on it, but this torque is neutralized by a counter-torque
caused by the “force” of inertia. Thus, the net magnitude of dJhoriz/dt is zero in a stationary
state of precessional motion.

If, instead, we define the vector dJhoriz as a vector whose direction is defined by reference to a
stationary Cartesian system of coordinates, it will be capable of undergoing changes in
direction, and the quotient dJhoriz/dt will no longer be zero (since dJhoriz will not be zero, but
only vanishingly small). The vector dJhoriz will then become indistinguishable from the vector
dJspin. However, the so-understood quotient dJhoriz/dt = dJspin/dt is merely an expression of
the angular velocity of precessional motion, which follows from the presupposed fact of a
precession, and from nothing more. The equation dJhoriz/dt = dJspin/dt is correct a priori (and
therefore doesn’t qualify as a physical law, but as a tautology), given that a precession is
occurring. But since it not sure whether or not dJhoriz/dt is also equal to Thoriz (which would
be an empirical statement, that is, a statement that does not follow from the fact alone that a
precession occurs), it is also not sure whether or not (1) and (2) are physically correct. For
these two equations (and all “proofs”) stand and fall with a substitution of dJhoriz/dt by Thoriz ,
or of dJhoriz by Thorizdt, which is revealed when the train of thought that makes up the asserted
proof is continued. Quod erat demonstrandum.

2) A more detailed way of advancing the same “proof” of (1) is the following:

– In a Cartesian x,y,z-diagram (where z is the vertical direction), the length of a vector whose
origin coincides with the origin of coordinates represents the magnitude Jspin of the angular
momentum around the axis of rotational symmetry of the spinning top (bar magnet) at a given
moment in time (for the distinction between Jspin and Jtot see below). The small (horizontal)
vector dJhoriz mentioned by Morin/Purcell was added to the tip of vector Jspin by these authors.
The two vectors form a right angle with each other. The small angle d phi is the small angle
between the positions of  the precessing vector Jspin at the beginning and end of the short
temporal interval dt.  

– As the angle d phi (expressed in rad) is equal to the quotient of the length dJhoriz of the
short arc along the circumference of the tip’s precession-circle and the radius Jspin sin theta of
the tip’s precession-circle, Purcell/Morin claimed for this angle [theta is the angle between
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the vertical z-axis and Jspin]:
(3)

 
or
(4)

 
However, these equations are incorrect. The differential quotient dJhoriz/dt appearing in (4) is
zero (see above). Thus we have:
(5)
  

 
or
(6)

 
The distinction between “zero” and “vanishingly small” (with respect to dJhoriz and “µB sin
theta dt”) makes a difference of first order between the two sides of the inequation (6): In the
left-hand half of inequation (6)], dJhoriz turns up in the numerator of a quotient dJhoriz/ (Jspin

sin theta dt), whose denominator (Jspin sin theta dt) is vanishingly small. In other words, the
quotient dJhoriz/ (Jspin sin theta dt) is always zero, whereas the quotient µB sin theta dt/ (Jspin

sin theta dt) = µB/Jspin is a non-vanishing number.    

III. A second erroneous attempt of deriving the common equation of precessional
motion

A second (also unsuccessful) attempt to obtain (1) is the following:

The equation
(7)
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was used as the starting point by some authors. Omega is the angular velocity of precession. 
Jspin is the angular momentum of the top around the axis of rotational symmetry (spin).

Note that (7) presupposes that Jspin undergoes a change in direction, but not in magnitude. If
Jspin undergoes a change in magnitude but not in direction, we have:
(7a)

If Jspin undergoes a change in direction but not in magnitude (as is the case when a gyroscope
is precessing), we have:
(7b)

As the next step, it is postulated that the right-hand side must be equal to the permanent
torque Thoriz applied to the gyroscope in a horizontal direction, or:
(8)

The subscripts “spin” and “horiz” represent directions perpendicular to each other.
Next, (8) is converted into:
(9)

 
from which (1) is derived.

However, (8) and (9) are incorrect. The correct equations are: 
(10)

and
(11)
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This is shown below. No reason was given by the authors why the factor in front of Thoriz in
(8) and (9) was simply unity, and not any other number. 

One must realize that (7) is nothing but an expression of a given precessional motion, and
does not assert anything other than that a precession is taking place. By itself, it does not
imply a relationship with a torque Thoriz. With the same right, (7) could also be applied to the
hand of a clock. Vector J in (7) can then represent the length of the hand, and vector omega
can then represent the angular velocity of the hand. When knowing two of the three vectors
that appear in (7), the third one is fixed, both in case of the clock and the gyroscope. 

Therefore, when setting dJspin/dt equal to Thoriz in (8) without any further arguing, one does
not state an empirical law, but either speculates on an empirical relationship, or makes a
definition of Thoriz. In the latter case, we have:
(11a)

By itself, (11a) lacks of an empirical or logical necessity to set X equal to the torque Thoriz

(acting on the gyroscope), even though the dimension of the vector X is the same as that of a
torque. Definitions are the results of arbitrary decisions, and they defy a rating of right or
wrong. Even if we decide that X shall represent a torque, it will not be clear whether or not
any factor should be placed in front of Thoriz. Whether nor not X should the same as Thoriz with
or without a factor in front of it, that is, whether or not a chosen definition is useful, is not
revealed by (11a) proper. Instead, it is revealed by reflections that scrutinze how that decision
would fit into the system of equations (laws) that already exist in physics, that is, whether or
not the decision would lead to contradictions with those equations.

IV. The derivation of a correct equation of precessional motion 

A correct equation is obtained by simply observing two basic principles: first, Newton’s first
law when applied to the vertical z-component of rotational motion (which is, different from
the components of rotational motion in the x- and y-directions, not affected by the torque),
and, second, the law of conservation of energy. 

Let us imagine that the angular momentum of a spinning, permanently magnetized bar is
oriented along the horizontal x-axis to start with. Gravity is absent. A homogeneous magnetic
field B (not too strong) shall now be added which points strictly in the vertical z-direction.
This situation was depicted in Purcell and D. J. Morin (2013), Fig. J.3., p. 823. In the
following,  Jspin is the magnitude of the angular momentum around the intrinsic axis of
geometrical symmetry of the spinning bar which pointed in the horizontal x-direction before
the external magnetic field B was switched on (with the latter pointing in the vertical z-
direction), T is the torque caused by the homogeneous, external magnetic field B (which
points in the vertical z-direction), the term Wkin-precession is the kinetic energy of the
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precessional motion, the term Jprecession-z is the (vertical) z-component of the angular
momentum of the precessional motion, Jtotal-z is the z-component of the total angular
momentum, theta is the angle between the horizontal x,y-plane and the spinning bar (or the
vector Jspin) whose center sits at the origin of coordinates (note that theta is no longer the
angle between the spinning bar and the vertical z-axis), µ is the (permanent) magnetic
moment of the spinning bar, omega is the angular velocity of precessional motion, M is the
moment of inertia of the precessional motion. Thus, we have the following two basic
principles:
(12)

 

or
(13)

or
(14)

 

and also
(15)

 

or
(16)

 

Because the precession is only in the z-direction and in no other direction, we have the
absolute magnitudes:
(17)
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Equation (14) thus converts into:
(18)

 

The angular velocity of the precessional motion in the z-direction does not depend on theta. It 
is twice as large as reported by Purcell and other authors.

V. Energy and momentum balance of the process that brings about a steady
precessional motion

As regards the torque around a horizontal axis (oriented always perpendicular to the axis of
rotational symmetry of the bar, that is, to the axis of spin), the two basic principles mentioned
above do not exclude a change in the magnitudes of the total angular momentum and the
rotational energy as a result of the action of that torque. However, they set a limit on the
extent of the change. That is, for the spinning top (bar) to precess around the vertical z-axis, it
has to pick up energy to the extent of the kinetic energy of precessional motion.  This energy
is acquired before the final precessional motion is established. This is achieved by giving way
to the horizontal torque. 

In other words: it is incorrect to state that the horizontal torque does not result in an increase
in the total rotational energy. Instead, the horizontal torque results in an increase in the total
rotational energy and a change in the total angular momentum, but only to a limited extent. 

For the stationary state of precession, we thus have (according to the Pythagorean theorem,
and because Jtot points in a strictly horizontal direction, given the net angular momentum of
the gyroscope in the vertical direction is zero, while Jprecess points in a strictly vertical
direction):
(19)

 

or
(20)

One realizes that while the total energy of rotational motion increases, the total momentum
declines as a result of the process that generates the precessional motion. Once that motion
has been established, the horizontal torque is no longer capable of changing (=reducing) the
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magnitude of the total angular momentum Jtot any longer.  If the magnitude of the total
angular momentum could be changed any further, at least one of the two principles mentioned
above would be violated.

The decrease in the total angular momentum of the gyroscope during the process (at the end
of which the gyroscope precesses steadily) is accounted for by the principle of conservation of
angular momentum. While the external magnetic field that was generated by a big magnet
exerted a torque on the spinning bar magnet, the magnetic field of the spinning bar magnet
exerted a counter-torque that acted on the big magnet. The counter-torque produced an
angular momentum of the big magnet that hadn’t been there before. Since the sum of all
angular momenta must remain invariant, it follows that the total angular momentum of the
gyroscope had to decline.

VI. The correct equation of Larmor precession

To obtain the equation of precession of a spinning top when the spinning top is not a
permanently magnetized spinning bar, but a charged, spinning particle (Larmor precession),
the quotient µ/Jspin is simply replaced by q/2m; where q is the amount of electric charge of
the particle and m is its mass [the substitution of µ/J by q/2m dates back to O.W. Richardson
(1908)]. This substitution holds true (in classical physics) for all homogeneously charged
objects that are rotationally symmetrical. Therefore, (18) can be replaced by:
(21)

 

The parameter g is a dimensionless correcting factor required when the spinning particle does
not behave classically.  If g>1, the magnetic moment is greater than expected, or the angular
momentum is smaller than expected (or both). If g<1, the magnetic moment is smaller than
expected, or the angular momentum is greater than expected, or both. Experimental
measurements the Larmor frequency (that yield omega) suggest that the Landé factor g is
equal to 1, so that the particle behaves classically.

However, if the wrong equation (2) is taken as a starting point, one arrives at the wrong
equation:
(22)

 

 
Measurements of the Larmor frequency (that yield omega) then wrongly suggest that the
Landé factor g is equal to 2 for the particle (electron), so that the particle does not behave
classically.
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VII. The correspondence of cyclotron and precessional motion as a cross-check of the
equation of precessional motion 

It is worth noting that the cyclotron angular velocity of charged particles in a magnetic field is
identical to the right-hand side of (21) (if g=1) [Ch. Kittel (2005), Chapter 8, Equation 30, p.
200]. The equation of cyclotron motion can easily derived from the following two equations
(the left-hand side of the first equation is an expression of the Lorentz force that acts on the
charge q, the right-hand side of the first equation is an expression of the centrifugal force that
acts on the inert mass m of the charge, r is the radius of a circle path):
(23)

 

From (23), we learn that the circular motion at that angular velocity in a homogenous
magnetic field does not result in any internal pressure or traction (inflicted by a Lorentz-
force) on the spinning, charged object. This is because omega does not depend on r. 

Furthermore, the cyclotron angular velocity equation (23) is valid for all circular paths
(around the magnetic field lines) of electrically (volume-)charged bodies caused by the
Lorentz force. In other words, given that the path is circular, it must obey equation (23).  

With regard to a spinning, non-magnetic, but electrically (volume-)charged bar (hinged at its
center of mass at the origin of coordinates) that was oriented along the horizontal x-axis
before the external magnetic field turned up, all of its eventual circular motion of precession
around the lines of the B-field (that is, around the vertical axis of a x,y,z-system of
coordinates) can be regarded as cyclotron motion, given the existence of an external magnetic
field and hence a Lorentz force. 

Likewise, when replacing the spinning bar with a spinning macroscopic sphere (subject to an
external magnetic field) homogenously filled with fixed electric charge in its interior, the
precessional motion of this sphere must obey the equation of cyclotron angular velocity as
well as the equation of precessional angular velocity. This requirement is met if (18) and (21)
are accepted as the correct equations for the angular velocity of precessional motion.
However, this requirement is not satisfied if (2) is adopted. This presents a cross-check of
(18) and (21).

VIII. A vindication of the result g=1 obtained by Einstein and De Haas in their famous
experiment

It is well known to every scholar that Einstein and de Haas performed an experiment aimed at
a determining the quotient µ/J for the electron [A. Einstein / W.J. de Haas (1915)] by direct
mechanical measurement of both µ and J in a sample material (i.e., without resorting to the
Larmor frequency). The outcome was a confirmation of the classical equation µ/J = q/2m,
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and the factor g was thus found to be equal to unity [see P. Galison (1982), p. 297:
“Einstein’s theoretical prediction corresponded to a g-factor of 1; his and de Haas’
empirical result was equivalent to a g-factor of 1.02 with an error of 0.10.”].

Since 1915, the experiment has been repeated by others [for instance by S.J. Barnett/ L.J.H.
Barnett (1925)] with varying, though not compelling results.  P. Galison (1982) provided an
overwiew. 

It was because of the incorrect equation (22) of the Larmor precession that the scientific
community has eventually tended towards a value of two (rather than one) for the Landé
factor g. It was observed that matter was sending out electromagnetic waves the origin of
which was seen in the precessional motions of particles. To describe these precessional
motions, the (wrong) Larmor equation (22) was used. Therefore, based on the observed
radiation frequencies or the observed omega (and knowing B, q and m), the conviction
prevailed that g had a value of (approximately) two. The experimenters S. J. Barnett/L.J.H.
Barnett (1925, p. 128) expressed this development as follows:

“Our phenomenon is undoubtedly connected closely with the Zeeman effect, as our
magnetons may be considered to be executing regular precession upon them brought about
by the rotation. ... As Landé has suggested, the anomaly of the Zeeman effect .... is probably
related to the anomaly in our phenomenon. This anomaly Landé and Sommerfeld have
attempted to explain by a process which appears to be ... attributing to this a value of [g]
equal to m/e [g=2]... .”

However, with the correct equation (21) this argument becomes baseless, and g is found to be
equal to unity (as had been asserted by Einstein and De Haas).

IX. Laboratory experiments with macroscopic gyroscopes 

Laboratory experiments aimed at determining the precession rates of gyroscopes are regularly
performed for pedagocical purposes in undergraduate courses at colleges and universities. As
a result of these experiments, incorrect equation (1) appears to be confirmed.

There is a simple explanation for this outcome; in these cases, precession is necessarily
accompanied by nutation. This reduces the angular velocity of the precession by
approximately half.

In greater detail, when the spinning wheel of a demonstration gyroscope is released from rest,
it drops slightly (see above). Thereby, it picks up some kinetic energy. After reaching the
equilibrium angle theta, the kinetic energy of the vertical fall is not instantly converted into
the kinetic energy of horizontal motion along a perfectly circular path of precession. Instead,
the fall of the gyroscope overshoots the equilibrium angle theta to some extent. As a
consequence, the path of precession of any point of the figure axis (axis of rotational
symmetry) displays twists and turns, and forms a succession of numerous “U”s that sit side by
side [see J. Hanks (1994), Fig. 4.2 A, p. 18]. The total length of the path is approximately
doubled. However, the resulting speed along this twisted path is determined (and limited) by
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the amount of potential energy converted into kinetic energy during the vertical fall. Hence,
the kinetic energy is not larger than that in the case of a perfect, that is, an undisturbed
precession circle. 

Given that the total length of the circular path is enlarged (roughly doubled) by the twists and
turns, the time needed to complete a full precession circle has thus increased (roughly
doubled), and the angular velocity is only approximately half of that without nutation. 

To put it the other way round: If (1) were correct, the experimental results would have to fall
significantly short of what is predicted in (1), given that the total path, due to nutation, is
much longer than 2 pi r, and also given that the velocity along the path cannot be higher than
it would be without the nutation.

When it comes to electrons and their precession, there is no need to expect a nutation. 

Finally, one should be aware of the following consequence: In case empirical results lead to a
discarding of Equation (2), at least one of its starting points, that is, the principle of energy
conservation and the principle of conservation of angular momentum, would thereby be
proved to be empirically wrong. 

X. Results

By using Newtonian mechanics and the principle of conservation of energy, it was shown that
the equation of the precessional motion of a spinning top and the equation of the Larmor
frequency require an additional factor of two. The longstanding error in the literature was
caused by the wrongful treatment of a variable (dJhoriz) in the numerator of a differential
quotient as vanishing although its true value was zero. When defining the vector dJhoriz to be
capable not only of changes in magnitude, but also in direction, it is no longer zero (during
the stationary state of precession), but only vanishingly small (which makes an important
difference). But then dJhoriz/dt is no longer a correct expression of the torque that acts on the
gyroscope.
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