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Abstract: It is shown that a traverse of a Black-and-White Hole (through a shaft in the interior

of the central, spherical body) in free radial fall and rise is described by the Schwarzschild

metric without any ambiguity. In other words, all Black Holes can also be White Holes. The

relativity principle, according to which both the freely falling/rising observer Alice and a

second observer Bob (sitting outside of the gravity field) have to measure the same

temporal interval for the complete trip, is observed [(Dt)/(Ds)¼ 1]. In the interior of the

Schwarzschild radius, Alice’s time s is reversed. Kruskal charts do not present an obstacle

to this result, since quadrant II can be used for ingoing traffic only, but not for outgoing traffic.
VC 2020 Physics Essays Publication. [http://dx.doi.org/10.4006/0836-1398-33.4.460]

R�esum�e: Il est montr�e qu’une travers�ee d’un trou noir et blanc (�a travers un puit �a l’int�erieur du

corps sph�erique central) en chute et mont�ee radiales libres est d�ecrite par la m�etrique

Schwarzschild sans aucune ambigu€ıt�e. En d’autres termes, tous les trous noirs sont �egalement des

trous blancs. Le principe de relativit�e, selon lequel l’observateur Alice qui tombe ou monte

librement et un deuxième observateur Bob (situ�e �a l’ext�erieur du champ de gravit�e) doivent

mesurer le même intervalle temporel pour le voyage complet, est observ�e [(Dt)/(Ds)¼ 1]. �A
l’int�erieur du rayon Schwarzschild, le temps s d’Alice est invers�e. Les diagrammes Kruskal ne

pr�esentent pas d’obstacle �a ce r�esultat, car le quadrant II ne peut être utilis�e que pour le trafic

entrant, mais pas pour le trafic sortant.
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I. INTRODUCTION

Black Holes are considered as objects from which no

objects or signals can escape. The only exception that is con-

ceded to exist is to be a mere theoretical possibility: Since all

processes in nature are reversible in time, a Black Hole is

assumed do the opposite of what it is usually doing (for a

short period of time) if one waits long enough: it must then

“spit out” objects and signals while it does not allow any

object or signal to enter. Such an object has been labeled

“White Hole,” and it is considered as a phenomenon that is

very improbable to occur.

The confidence in the blackness of Black Holes has

been gained by so called Kruskal-charts. Kruskal-charts are

geometrical representations of the result of a coordinate

exchange. The t- and r-coordinates of the Schwarzschild

metric are substituted by a timelike T- and a spacelike

X-coordinate. The so-generated chart is interpretated in a

way that (within the Schwarzschild radius of the massive,

spherical body) an outgoing light pulse or any other outgoing

object is doomed to end up at the center of the spherical

body.

It will be shown that this interpretation of Kruskal-charts

is wrong, namely, at odds with the Schwarzschild metric.

II. DERIVING THE EQUATION OF FREE FALL/RISE
WITH “COORDINATE TIME” t OF A DISTANT
OBSERVER AS THE DEPENDENT VARIABLE

According to Newtonian physics, the potential energy

Wpot per unit mass of a test body that finds itself in free radial

fall/rise outside of a massive spherical body at a distance

r> r0 from the center is equal to (r0 is the radius of the

spherical body, measured as circumference divided by 2p)

�Wpot rð Þ ¼
ð1
r

GM

r2
dr

¼ GM � 1

r

� �1
r

¼ GM

r
¼ Wkin rð Þ

¼ 1

2
v2

esc rð Þ: (1)

Here, G is Newton’s constant, M is the total mass of the

spherical body, vesc is the escape velocity that depends on r
(radial distance from the center, measured as circumference

divided by 2p), and Wkin is the kinetic energy per unit mass

of the test body in free radial fall that started at a very distant

position outside of the spherical body. It must be equal to the

magnitude of the potential energy of the test body.a)andreas@andreastrupp.com
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Rearranging Eq. (1) gives the escape velocity according

to Newton’s physics

v2
esc rð Þ ¼ dr2

dt2
¼ 2GM

r
¼ c2rs

r
: (2)

Here, rs (¼2GM/c2) is the Schwarzschild radius (where the

escape velocity is c).

The relativistic escape velocity vrel according to the

outer Schwarzschild solution, that is, according to

ds2 ¼ 1� rs

r

� �
dt2 � 1

c2 1� rs

r

� � dr2

� r2

c2
dh2 þ sin2h du2
� �

; (3)

is equal to

v2
rel rð Þ ¼ dr2

dt2
¼ c2rs

r
1� rs

r

� �2

: (4)

The velocity of a freely falling/rising observer Alice—mea-

sured in coordinate time and space of a distant observer Bob

who is at rest in his frame of reference—is reduced by two

dimensionless factors (in comparison with Newton’s phys-

ics): The first factor gives consideration to the time dilation

in a gravity field, and the second factor gives consideration

to the shrinking of stationary, radially oriented meter sticks

in a gravity field. In a radial fall/rise, the differentials du and

dh are zero.

From Eq. (4), we get

Dt ¼
ðr tð Þ!1

r tð Þ¼r

dt ¼
ðr!1

r¼r

1

c

ffiffiffiffi
rs
p ffiffi

r
p 1� rs

r

� � dr

¼ 1

c

ð1
r¼r

ffiffiffiffi
r

rs

r

1� rs

r

dr ¼ 6
rs

c

6rs

r
þ 2

� �				 r

rs

� �3=2
				

3

2
64

� ln

				
ffiffiffiffi
rs

r

r
þ 1

				
 !

þ ln

				
ffiffiffiffi
rs

r

r
� 1

				
 !375

r!1

r¼r

: (5)

In order to determine the time interval Dt for the whole trip

(free fall followed by free rise, and back again), the right-

hand side of Eq. (5) must be multiplied by the factor 4.

III. DERIVING THE EQUATION OF FREE FALL/RISE
WITH “PROPER TIME” TAU OF THE FALLING/RISING
OBSERVER AS THE DEPENDENT VARIABLE

Next, we will determine the proper time s, that is the

time measured by Alice who is in free fall/rise.

From Eqs. (3) and (4), we get

ds2

dt2
¼ 1� rs

r

� �
� 1

c2 1� rs

r

� � dr2

dt2

¼ 1� rs

r

� �
� 1

c2 1� rs

r

� � c2rs

r
1� rs

r

� �2

¼ 1� rs

r

� �2

; (6)

or

ds2 ¼ 1� rs

r

� �2

dt2: (7)

From Eqs. (7) and (4), we obtain

ds2 ¼ 1� rs

r

� �2 1

c2rs

r
1� rs

r

� �2
dr2 ¼ r

c2rs
dr2 (8)

or

Ds ¼
ðr sð Þ!1

r sð Þ¼r1

ds ¼
ð1
r1

ffiffiffiffiffiffiffiffi
r

c2rs

r
dr

¼ 2

3c
ffiffiffiffi
rs
p r3=2

� �r!1

r¼r1

¼ 2rs

3c

r

rs

� �3=2
" #r!1

r¼r1

(9)

(see Ref. 1, Sec. 25.5, Eq. (25.38), 1st line, p. 667).

IV. THE RATIO OF Dt AND Ds

The diameter r0 of the spherical body shall be much,

much smaller than rs and is thus approaching zero. For

Alice’s free rise/fall that begins/ends at r¼ 0 and hence at

t = s ¼ 0 [the square bracket on the right-hand side of Eq. (5)

is zero for r¼ 0, and so is the square bracket on the right-

hand side of Eq. (9)], we then get from Eqs. (5) and (9)

lim
r!1

Dt

Ds
¼ lim

r!1

rs

c

6rs

r
þ 2

� �				 r

rs

� �3=2
				

3
� ln

				
ffiffiffiffi
rs

r

r
þ 1

				
 !

þ ln

				
ffiffiffiffi
rs

r

r
� 1

				
 !2

664
3
775

2rs

3c

				 r

rs

� �3=2
				

¼ 1: (10)
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Reference 1, Sec. 25.5, Eq. (25.38), p. 667, would, for far-

away starting points of a radial fall, have come to the same

result as presented in Eq. (10), if it had been realized that the

quotient

limes
r!1

t

2M
s

2M

¼ limes
r!1

� 2

3

r

2M

� �3=2

� 2
r

2M

� �1=2

þ ln

r

2M

� �1=2

þ 1

r

2M

� �1=2

� 1

� 2

3

r

2M

� �3=2
¼ 1

of their expressions for t and s – appearing in first and

second lines of their Eq. (25.38)–approaches unity for very

large r.

At r¼ rs, the integrand in Eq. (5) flips its sign when

Eq. (5) is applied to the “Black-and-White-Hole.” One

should note that neither the singularity at r¼ rs nor the singu-

larity at r¼ 0 prevents Eq. (5) from working [and yielding

Eq. (10)].

However, it should be noted that

lim
r!1

Dt� Dsð Þ

does not exist. This can be considered as a result of the fact

that the Schwarzschild metric is written in coordinate time

and space (t, r) of a (stationary) distant observer supposed to

be outside of the gravity field, though such a position does

not exist: Gravity does not shrink to absolute zero even at

large r. Hence, the Schwarzschild metric contains a small

error, which surfaces when temporal intervals are very long.

In other words: Bob’s true time interval between the two

events is a little shorter than Dt, and, given that the gravity

he feels is not absolute zero, is even a little shorter than Ds
(measured by Alice).

V. “(DT)/(Ds) 5 1” AS A CONSEQUENCE OF THE
RELATIVITY PRINCIPLE

The approximate equality of Ds and Dt as expressed in

(10) is not a coincidence, but is a requirement of the relativ-

ity principle

The r-geodesic, that is

d2R

ds2
þ Cr

lv

dxl

ds
dxv

ds
¼ 0 (11)

turns into Newton’s law of gravitation (valid for a local

observer in the gravity field whose time is s) in case the

Schwarzschild metric is used for a determination of the

metric tensor g that is hidden the Christoffel symbol. (It

can be left undecided whether or not R, now defined as

radial distance measured by laying radially oriented meter

sticks end to end, should better be replaced by r, that is

circumference divided by 2p.) That is to say: The antira-

dial acceleration described by Newton’s law, and experi-

enced by a local observer in the gravity field (Alice) with

respect to a system of spatial coordinates, in which the

central spherical body is at rest, is nothing but the result

of a local curvature of spacetime. In other words: Since

freely falling Alice, whose trajectory in spacetime is

determined by gravitation (and nothing else), is traveling

along a r-geodesic, she does not experience any true

force at all.

Consequently, she is perfectly entitled to say that she is

permanently at rest while other things around her are in

accelerated motion. The local speed of light—measured at

the position where she is permanently at rest (in her own

frame of reference)—is c.

Moreover, at her stationary position in space (stationary

with respect to her own frame of reference), the first deriva-

tive of the local speed of light with respect to Alice’s spatial

coordinate R is zero: Due to the effect of tidal forces, gravity

is no longer zero for Alice at positions some radial distance

away from her. That gravity may either reduce or increase

the speed of light as seen from Alice’s position. But since

the directions of those gravitational forces, when moving in

the positive and negative radial directions, are opposing each

other, the situation is qualitatively symmetrical for Alice, so

that the speed of light at Alice’s position must be an extre-

mum, that is, either a maximum or a minimum. But this is

just another way of saying that the first derivative of the

speed of light with respect to R is zero at Alice’s position (in

Alice’s frame of reference).

In short: Freely falling reference systems (like Alice’s)

are inertial systems—if they are not too large.

(See Ref. 2, Chap. 8, p. 177: “As a result, he [Einstein]

defined this type of reference frame which we can call a

free-fall frame as the only valid inertial frame in the theory

of general relativity. He considered these frames to be spe-

cial because they would be the only ones in which all of

the physical laws that he considered to be correct would be

valid. In order to utilize this concept, he had to conclude

that all such free-falling frames of reference were

equivalent.”)

In comparison, the situation of an observer (Alice’s

sister) who sits on the surface of a spherical body is differ-

ent: Though the local speed of light measured by that

observer is c also in this case—this is what the Schwarzs-

child metric tells us—the first derivative of the speed of

light with respect to his/her spatial coordinates is different

from zero. This can be regarded as a consequence of the

fact that he/she is not traveling along a r-geodesic in

spacetime, which, in turn, is the result of the fact that he/

she is experiencing a repulsive, upward force exerted by

the surface of the spherical body. That force is not the

mere result of a local curvature of spacetime, but is elec-

trostatic in nature.

In this context, the principle of locality postulates: What-

ever physical effect happens to someone or something, is the

result of local parameters, and not of parameters valid at

positions far away. Hence, both Alice (who traverses a
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spherical body in free fall and rise) and Bob (who stays out-

side of the gravity field) do not only have the same right to

say that they are (and have been) at rest all the time, but they

can, in addition, expect that everything physical that has hap-

pened to Alice as an effect of gravity or velocity must have

also happened to Bob. This is why, at the moment of reunion

(at the end of the trip), the same amount of time must have

elapsed for both of them.

To put it differently: Assuming that the traveling

observer (Alice), if small enough, constitutes an inertial sys-

tem, the relativity principle requires a reciprocity of time

dilation. If the observer who had stayed outside (Bob) would

find a dilation of time by a factor of 2 in the other system

(Alice’s) (that is, if he would find Ds/Dt¼ 1/2) after comple-

tion of the trip, the traveling observer Alice, whose time is s,

would, in turn, have to find that time has passed more slowly

by a factor of 2 in the system of the stationary observer

(Bob) than in her own (Alice’s). In other words: Ds/Dt must

equal (Dt0/Ds0). The primed bracket stands for the quotient

valid in Alice’s frame of reference. But in our special case,

this equality can only hold true if Ds/Dt ¼ Ds0/Dt0¼ 1. In

other words: If two clocks—that had been synchronized

when having met each other for the first time—meet each

other a second time, it is impossible (for logical reasons) that

each of the two clocks lags behind the other.

This is quite different from the situation of an observer

in the gravity field who is stationary (Alice’s sister). Due to

the force Alice’s sister is feeling, she cannot consider herself

as being in the center of an inertial system. Consequently,

the time dilation with respect to that observer (Alice’s sister)

measured by a (stationary) distant observer (Bob) is not

subject to reciprocity. This is why, from Alice’s sister’s per-

spective, Bob’s time is compressed.

VI. THE CORRECT APPLICATION OF KRUSKAL
CHARTS

Given that Eqs. (5), (9) and (10) prove that the

Schwarzschild metric allows for a traverse of a “Black-and-

White Hole” in free fall and rise without any difficulties

(even the relativity principle is observed), why shouldn’t we

think that ALL Black Holes are also White Holes?

Kruskal-charts can hardly be an obstacle to saying “Yes,

we can.” On a Kruskal-chart, every single event—if defined

by a single r-coordinate and a single t-coordinate—is repre-

sented by two points (and not just one point), with the two

points sitting in two different quadrants.

Equations (5), (9), and (10) that describe Alice’s free

rise permit only one answer to the question as to what this

doubling of event-points is all about: Quadrant II of the

Kruskal-chart can only be used for ingoing traffic, but not for

outgoing traffic. For outgoing traffic, a different quadrant

must be used. In that different quadrant, any outgoing light

pulse (moving at 45�) that originates in the interior of the

Schwarzschild horizon does NOT end up at the singularity

(that is, at r¼ 0), but crosses the Schwarzschild horizon into

outer space. So does freely rising Alice.

Since the equality of Dt and Ds (as expressed in Eq. 10)

is proof of the fact that Eq. (5), despite the singularity at

r¼ rs, gives a true description of Alice’s free rise across the

Schwarzschild radius (and is not just an artefact), quadrant II

of the Kruskal chart is barred from being used for a represen-

tation of Alice’s free rise (as a dashed line in Fig. 2).

VII. THE ASYMMETRY BETWEEN BLACK HOLES AND
WHITE HOLES: WHITE HOLES AS WEAKLY, BUT NOT
HIGHLY IMPROBABLE OCCURRENCES

Despite of what has been said above, there seems to be

an asymmetry between Black Holes and White Holes insofar

as Black Holes seem to be much more abundant than White

Holes. Why is that?

As is commonly accepted, strictly irreversible processes,

i.e., processes that are forbidden to occur (by laws of nature)

in reverse order, do not exist. Let this recognition be called

the “reversibility statement.” It applies to the falling of an

object into a Black Hole as well. That is to say: Given an

object may fall into a Black Hole, the reverse, that is the

escape from a Black Hole, cannot be strictly forbidden by

laws of nature.

On the microscopic level, there is not even a preference
for a temporal direction. That is to say: If a short video of a

microscopic process were shown, one could not tell whether

or not the video is run in reverse. On the macroscopic level,

things seem to be of a different kind. Differences in tempera-

ture within a gas enclosed in a chamber vanish, but the

reverse has never been observed. That is to say: A video

showing the building up of temperature differences in a gas

of formerly homogenous temperature can clearly be judged

as being a video that is run in reverse, and not in the time

order in which the process was observed.

FIG. 1. Traversing a Black-and-White-Hole for which r0, the diameter of

the spherical body, is vanishingly small compared with the Schwarzschild

radius rs (represented by two vertical lines), with the world line of the trav-

eler being determined by a single equation, namely, Eq. (5). The numbers on

the graph (that represents Alice’s world line) are marks of Alice’s time s.

The vertical direction is Bob’s time t, the horizontal direction is Bob’s spa-

tial coordinate t.
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As is commonly known, this temporal asymmetry on the

macroscopic level is accounted for by the fact that the mac-

roscopic state of an almost homogeneous temperature of a

gas comprises many more microstates than the competing

macrostate of an inhomogeneity of temperature within the

gas does. Hence, the building up of a temperature difference

in a gas of formerly homogeneous temperature is not consid-

ered as being physically impossible, but highly improbable.

Speaking of a “highly improbable macrostate” thus means:

The macrostate comprises far less (equally probable) micro-

states than a competing macrostate does.

The common (but erroneous) view on Black Holes is

quite similar. If a video were shown in which an object or

signal is leaving the interior of a Black Hole, common opin-

ion would have it that the event is shown in reverse, and not

in the time order in which it was observed. But how can this

conviction be justified (given the fact that all microscopic

processes, when shown in a video, cannot be rated in that

manner, but can be presented in either temporal order)?

According to the common (but erroneous) view, the case of

an object that leaves the interior of a Black Hole does not

resemble a microscopic process, but resembles the behavior

of an ensemble of molecules of a gas whose temperature was

homogeneous to start with, and in which differences in tem-

perature are evolving over time. That is to say: Common

opinion does not rule out that objects may leave the interior

of a Black Hole, but consider such an event as a highly

improbable macrostate.

To clarify: Whenever an object manages to cross the

Schwarzschild horizon from the interior to the exterior, we

speak of a “White Hole.” Consequently, we speak of a

“Black Hole” whenever an object crosses the Schwarzschild

horizon the other way, that is, from the exterior into the

interior. Hence, Black Holes and White Holes need not be

different stellar objects, but can be names for different

aspects of one and the same stellar object.

But is it justified to say that an object which is crossing

the Schwarzschild radius from the interior to the exterior

constitutes a macrostate which comprises far less microstates

than the crossing of the Schwarzschild horizon from the

exterior to the interior does? The answer is clearly in the

negative. Both macrostates comprise one single microstate

each, and not more. Given that there are only two objects in

the game, which can be well distinguished from each other

(the massive object and the tiny, infalling/outgoing test

body), the distinction between microstates and macrostates

makes no sense.

The common (but erroneous) opinion is thus facing a

dilemma: It regards White Holes as highly improbable in the

sense described, but cannot justify that assessment. On the

contrary:

A “high improbability” for White Holes can surely be

excluded, since the term does not apply to White Holes.

What we are thus left with is the recognition that the

“reversibility statement” does apply, whereas the statement

of a high improbability does not. That is to say: Even without

any calculations, the fallacy of the common interpretation of

Kruskal-charts, according to which (practically) all outward-

directed trips that originate within the Schwarzschild radius

are doomed to end up at the center of the sphere, becomes

obvious.

To wrap it up: White Holes are neither physically impos-

sible, nor highly improbable. The equations displayed above

do not show any preference for inward motions over outward

motions of test-bodies; nor do Kruskal charts. In other

words: General Relativity adheres to the reversibility state-

ment. Moreover, the distinction between microstates and

macrostates that could give rise to the rating of “highly

probable” and “highly improbable” does not apply here. We

can thus exclude that escaping from the interior of a Black

Hole is a highly improbable event.

The only difference between Black Holes and White

Holes is the following: As with ordinary stellar objects

like planets (that do not have a Schwarzschild horizon),

the phenomenon of accretion (caused by gravitational

attraction) is responsible for the fact that far more small

objects find their way from space into close orbits around

big stellar objects (or onto their surfaces) than are ejected

from close orbits around big stellar objects (or from their

surfaces) into space. Even more generally speaking: Due

to the attractive force of gravity, objects in space that

attract each other are far more abundant than objects that

repel each other. That is to say: In comparison with Black

Holes, White Holes are weakly improbable (when it comes

to observing stellar objects that have a Schwarzschild

horizon).

VIII. THE RELATIVITY OF EARLIER/LATER FOR
TIMELIKE EVENTS LIKE BIRTH AND DEATH OF A
PERSON

Despite a corrected conception of Black Holes—accord-

ing to which all Black Holes can also be White Holes—

FIG. 2. Alice’s world line (as depicted in Fig. 1) shown by a Kruskal-

chart. According to the common misinterpretation of Kruskal-charts, the

outgoing leg of the trip is represented by the short, dashed line (originating

at the upper t¼ 0, r¼ 0 situated in quadrant II) that leads to nowhere. When

utilizing the Kruskal-chart correctly, the outgoing leg is represented by a

diagonal line that originates at the lower t¼ 0, r¼ 0 situated in quadrant IV.

For reason of simplicity, the two legs are shown as straight lines (as if Alice

were a light pulse), and not (as it should be) as lines that are slight curves.
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Black-and-White Holes have not lost their role of being

special. On the contrary: The relativity of an ordering of

earlier-later, which, according to Special Relativity, applies

to causally unrelated (spacelike) events only (occurring far

away from each other), is now extended to causally related

(timelike) events, for instance, the beats of Alice’s heart

when she is inside the Schwarzschild radius. Thereby the

“relativizing” of a temporal ordering earlier/later and hence

of time is made complete: The death of a person does not

occur after her birth in all frames of reference; instead, there

are frames in which the death is the beginning of a person’s

life, so that her birth is the end.
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