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Abstract: In 1868 J.C. Maxwell proved that a perpetual motion machine of the second kind
would become possible, if the equilibrium temperature in a vertical column of gas subject to
gravity were a function of height. However, Maxwell had claimed that the temperature had to be
the same at all points of the column. So did Boltzmann. Their opponent was Loschmidt. He
claimed that the equilibrium temperature declined with height, and that a perpetual motion
machine of the second kind operating by means of such a column was compatible with his
concept of the second law of thermodynamics. Thus he was convinced he had detected a never
ending source of usable energy for mankind. At a later time, E. Mach, too, did not rate the
invention of a perpetual motion machine of the second kind as being impossible, but did not
mention Loschmidt’s idea. In this article, new arguments (based on statistical mechanics) are
provided for the hypothesis that an insulated column of gas subject to gravity does not take on
a homogenous temperature: Since Boltzmann’s distribution of energies leads to the general gas
law even in case the molecules are supposed to be extended objects, it follows that Boltzmann’s
distribution cannot be strictly valid if experience requires to replace the general gas law
pV=NKT by p(V-b)=NKT. But such a modification of the general gas law is undoubtedly
required. With a modification of the general gas law and hence a deviation from Boltzmann’s
distribution of energies thus being indispensable, it further follows that a homogeneous
temperature cannot be achieved in an insulated column of gas subject to gravity.
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1) Introduction

When taking a look at any textbook on general physics, one finds the second law of
thermodynamics formulated in two equivalent ways: "The total entropy of an isolated system
can never decrease", and "A perpetual motion machine of the second kind is impossible".
Today, doubting the impossibility of such a machine is just as inconceivable as is the assertion
that a perpetual motion machine of the FIRST kind might exist, which creates energy from
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nothing. A closer investigation, however, reveals that in the second half of the nineteenth
century, a vivid debate was held among most reputable scientists on the possibility of a
perpetual motion machine of the second kind. One of the most prominent propagators in favor
of such a possibility was Josef Loschmidt, a name today well known even to school-kids
through the celebrated Loschmidt's number. A perpetual motion machine of the second kind
would be capable of permanently creating, in a cycle, mechanical energy from just one single
reservoir of heat. Thus it would become possible, for instance, to convert the (dissipated) energy
of heat contained in the air into mechanical energy without requiring a second, colder reservoir
for the absorbtion of the refuse heat. Therefore mankind would have available a source of
energy that practically cannot be exhausted.

Loschmidt and Maxwell asserted that, if there were a difference in equilibrium temperature in
a column of gas subject to gravity, the construction of a perpetual motion machine of the second
kind would be possible. Up to the present day, no one has ever challenged that assertion.
Maxwell believed that the equilibrium temperature of the gas subject to gravity could not be
stratified, but had to be the same at all points. He did not provide a special proof; rather, he
intuitively extended his formula of velocities of molecules (which had been derived without
regarding gravity) to a gas subject to gravity. Boltzmann sided with Maxwell; in contrast to
Maxwell, he attempted to prove that the homogeneous temperature of a gas subject to gravity
was ensured by the kinetic theory of gases and by statistical mechanics. Loschmidt, however,
was convinced that a perpetual motion machine of the second kind was compatible with the
second law of thermodynamics. In that point, he disagreed with Clausius, Thomson, Boltzmann,
and Maxwell. In particular, he believed that a perpetual motion machine of the second kind
could be operated by means of a vertical column of gas, the temperature of which he claimed to
be stratified.

In the 20th century, Loschmidt's "revolutionary" assertion has hardly been paid any attention.
After all, it was mentioned by Stephen G. Brush in his 1978 book: "The Temperature of
History." However, Brush does not give more than a clue when telling his readers that the
dispute over the stratification of temperature between Boltzmann and Loschmidt provided a
contribution to the debate on the second law of thermodynamics. No further details are offered.
In more recent times (1995), it was Claude Garrod "who tried to give a new proof of the
uniformity of temperature. His arguments will be scrutinized further below.

It should be noted that the Second Law, when understood as the assertion that a perpetual
motion machine of the second kind cannot be built, is not subject to possible falsification by
observing nature, but by observing inventors. As a consequence, the "fruitlessness" of any
efforts in building a perpetual motion machine of the second kind could either be due to the
incompetence of inventors, or to nature itself not allowing the construction of such a machine.
The "fruitlessness" alone does not provide any means for deciding which of these two
alternatives is true. We will return to this point at the end of this essay.

2) On the history of the second law of thermodynamics

Though the expression "perpetual motion machine of the second kind" was only introduced by
Ostwald towards the end of the 19th century, the impossibility of such machine had been
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postulated as an axiom by Clausius already in 1849 and by Thomson in 1850. Both Clausius and
Thomson are considered the discoverers of the second law of thermodynamics ' .

One may wonder how Clausius and Thomson could obtain their firm belief in the truth of their
axiom. The fact alone that such a machine had not been invented until those days is not capable
of explaining this conviction. In addition, one has to take into account that already in the 18th
century the opinion of the impossibility of a perpetual motion machine prevailed, long before
the theorem of the conservation of energy or the distinction between the first and the second law
of thermodynamics were advanced. The idea of a system of movable parts that, having come to
rest once, would still be able to get into motion on its own, was simply inconceivable # . Of
course, the 18th century scientists were not yet familiar with the kinetic theory of heat and did
not realize that apparent rest turns into motion in the microscopic perspective. Such knowledge
would have impeded the formation of Clausius' and Thomson's axiom.

Picking up reflections previously published by Carnot, Thomson declared the impossibility of
a perpetual motion machine the foundation of his further investigations in the field of
thermodynamics: "It is impossible, by means of inanimate material agency, to derive mechanical
effect from any portion of matter by cooling it below the temperature of the coldest surrounding
objects" ¥ (It is worth mentioning that the assertion applies to cyclic processes only, not to a
non-cyclic process like an adiabatic expansion of a gas, in which the internal energy in the form
of heat content is converted into mechanical work at a rate of 100%.) From the impossibility of
such a perpetual motion machine one can easily infer the second law in a very general form
(though different from the actual one), stating that a system will not depart from an attained
state of equilibrium without interference from outside. Loschmidt accepted the second law in
such a general form only (more precisely: he believed that this form of the second law could be
derived from the mechanical principle of least action). However, as emphasized by Loschmidt
several times, it is impossible to invert the order of inference, i.e. it is not permitted to infer the
impossibility of a perpetual motion machine of the second kind from the second law in its very
general form:

"From these reflections one can draw the conclusion that the second law of thermodynamics
can be inferred from the axiom of Clausius "It is impossible to transfer heat from a colder to a
warmer body without compensation', or from the equivalent one of W. Thomson 'It is
impossible, by means of inanimate material agency, to derive mechanical effect from any
portion of matter by cooling it below the temperature of the coldest of the surrounding objects’,
that the inversion of that inference, however, is not permissible, because the content of the
second law is more general than that of those axioms."*

3) Maxwell's (hypothetical) perpetual motion machine of the second kind
In the 1860's and 70's scientists dealt with the question of whether a gas, which is subject to
gravity in an insulated column, had the same temperature at all points, or whether its

temperature was a function of height.

Maxwell was convinced that the temperature of a gas subject to gravity had to be uniform at all
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heights. Moreover, like Thomson and Clausius, he regarded a perpetual motion machine of the
second kind to be impossible. However, he was very sure that if there were a gradation of
temperature and if that gradation were different for different substances, a perpetual motion
machine would be possible:

"In fact, if the temperature of any substance, when in thermic equilibrium, is a function of the
height, that of any other substance must be the same function of the height. For if not, let equal
columns of the two substances be enclosed in cylinders impermeable to heat, and put in thermal
communication at the bottom. If, when in thermal equilibrium, the tops of the two columns are
at different temperatures, an engine might be worked by taking heat from the hotter and giving
it up to the cooler, and the refuse heat would circulate round the system till it was all converted
into mechanical energy, which is a contradiction to the second law of thermodynamics. The
result as now given is, that temperature in gases, when in thermal equilibrium, is independent
of height, and it follows from what has been said that temperature is independent of height in all
other substances." >

Modifying the device introduced by Maxwell, we put up with one column (filled with gas) only,
which is thermally insulated from its surroundings, with the exception of its floor and its ceiling.
A metal block in thermal contact with the outer side of the floor has the temperature of the
bottom part of the gas column (to start with). As a first step, the metal block is lifted upward
until it finds itself on top of the ceiling of the column. Heat flows from the block into the upper
part of the column, thereby passing a Stirling engine, where part of the heat flow is converted
into mechanical work. As a next step, the metal block is lowered to its orginal position. As a
third and last step, heat flows from the bottom part of the column into the block until the
temperature of the bottom part of the column and the block are equal to each other. The
mechanical work spent on lifting the block is just as large as is the mechanical work gained by
lowering the block (the relativistic increase in weight brought about by the increase in thermal
energy can be neglected).

One might be tempted to assume that the process of creating work has to come to a standstill as
soon as the temperature of the column has reached uniformity (due to the extraction of heat at
its bottom and the adding of refuse heat at its top). However, the starting point of our (and
Maxwell's) reflections was the hypothetical assumption (which Maxwell did not believe to be
true in reality) that a uniform temperature of a column of gas subject to gravity is NOT A
STATE OF EQUILIBRIUM. Hence we have to conclude that the gas, left to itself during that
break, will resume its state of temperature gradation. Then, the whole process can start over
again. The internal energy of the gas as a whole will thus be diminished and turned into
mechanical work without a second heat reservoir.

Strictly speaking, Maxwell's original device only demonstrates that DIFFERING temperature
gradients of two substances enable the construction of a perpetual motion machine of the second
kind, whereas the modification gives proof of the possibility of such machine already in case of
a gradation of equilibrium temperature in one single substance (see W. Dreyer, W. Miiller, W.
Weiss, Tales of Thermodynamics and Obscure Applications of the Second Law , for a detailed
report on the debate between Boltzmann and Loschmidt).
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4) A statistical proof of the non-homogeneity of temperature in gases subject to
gravity

a) Abstract of proof

It shall be proved that Boltzmann’s distribution of energies leads to the general gas law even in
case we assume that the molecules are extended objects. As a consequence, it follows that
Boltzmann’s distribution cannot be strictly valid if experience requires to replace the general gas
law pV=NKT by p(V-b)=NKT. This condtion is met in physical reality. But given Boltzmann’s
distribution of energies is not strictly valid, it can be easily shown that there cannot be a state of
equilibrium in which the temperature of a gas subject to gravity is uniform.

b) Derivation of Boltzmann’s distribution of energies

Before presenting the proof proper, Boltzmann’s distribution of energies shall be derived (in
doing so, I am following a thread laid out by L. Susskind in his online-lectures on Statistical
Mechanics at Stanford University), on the basis of which, in turn, the general gas law of the
ideal gas shall be derived as another (but last) pre-step ahead of the proof proper. This will
provide an insight into the scope and the limits of the statistical foundation of the general gas
law, which will be needed for the proof proper.

aa) We imagine a system of N boxes, in each of which energy can be stored. The energy stored
in an individual box shall be capable of taking on different discrete values (energy levels). The
numerous (discrete) energy states (energy levels) which any box is able to attain shall be given
consecutive subscript numbers 1, 2, 3 etc.. The number of boxes that find themselves on a given
level shall be named n. We thus have a sucession of n,, n,, n, , and so on.

Moreover, we shall assume that a definite total amount of energy (that is subdivided into
discrete portions) is being carried to the system of boxes and is being randomly distributed
among the boxes. The process of distribution shall have no “memory”. In other words: Even if
a box is in possession of more than the average energy already, its chances of receiving the next
energy portion that is to be distributed are as big as they are for a box that is almost empty yet.

For a better illustration, we imagine (as an example) that there are 15 boxes on the third energy
level. Consequently, we have n,=15. Different numbers may apply to the other levels.

At the end of the process of distribution of energy (in which, as an example, we assume there
were 25 boxes and three energy levels whose occupation numbers are n,, n, und n,), we are
interested in knowing how many variants exist for realizing the arbitrarily picked arrangement
n,=10, n,=11, n;= 4 of occupation numbers. The result (number), which shall be labelled
Lambda, is found by applying the following equation (a variant shall differ from a second
variant if, with respect to one or more of the three occupations of energy levels whose numbers
are n,, n, and n, , the list of names given to the individual boxes that make up the occupation of
an individual level n,, n, or n; is not completely identical with the list of names that exist in the
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compared variant):
(1
A = N N _ 25!
"H‘ " n! n,! n,! 10! 11! 4!
=1

No proof shall be given for this well-known rule of combinatorics.

bb) We want to find the maximum of the Lambda function (for reasons that will become
evident later on). The maximum of the Lambda function shall be subject to two constraints:

—The total sum of occupation numbers of any arrangement of occupations shall be N, that is,
shall be equal to the total number of boxes,

— the total amount of energy distributed to the totality of boxes shall be the same no matter
which arrangement of occupations is considered.

This leads to the following two equations:

2

and (E; denotes an energy level that a box may take on; E,,,, denotes the total energy of the sum
of boxes):

3)

i=n

E nfE i = Etotal

i=1

cc) Before consolidating (2) and (3) with (1), (1) shall be re-formulated with the help of
Stirling’s approximation. The logarithm of N! can be expressed as follows:

4

N N N
InN! =In1 +1n2 +.+ 1nN=E lanflnxdx=[(xlnx)—x] = (N In N)-N
1 5 0

or
(5)

N! = eN]nNe—N — NNe—N
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This is Stirling’s approximation for N!. Applying the approximation to (1), we get:
(6)

AN N¥e ™V ~ N¥
i=n n, n, m B ~Hy~Hy-... nny M
H nl! nl n2 }13 .. € nl n2 }13 ves
i=1

When forming the logarithm of Lambda, we get (with the probability P, , that is the probability
for a box to find itself on the i-th energy level, being defined as n; /N ):

(7

InA=NInN-Y nInn=NInhN-), PNIn(PN)=NInN-Y PN(nN +nP)

~NIDnN-NIlhN-Y) (P,NInP)=-N)Y (P,lnP)

In the last line of the equation, the sum of P, N In N was replaced by N In N, since the sum of
P, is equal to unity.

dd) We now have to use the method of Lagrange multiplier for the purpose of giving
consideration to the two constraints. When replacing n; by NP, (in accordance with the
definition of P, ) in the two equations for the constraints, we get:

®)

G =(P)-1=0

and

©)
G,=(C PE)-E=0

Overlined E is the average energy of a single box (E,,,/N). The terms G, and G, are functions
defined by the middle parts of the two equations.

With F being defined as a function that is equal to the logarithm of Lambda divided by N, we
set:
(10)
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F +aG +BG, =F + o). P) - 1] + B} EP) - E] = F'

Alpha and beta are two Langrangian multipliers, that is, fixed numbers whose value is
unknown yet. F” is not the derivative of F, but is defined as an expression of the sum on the left
side of the equation.

We shall now form the partial derivative of F> with respect to an arbitrarily picked probalitity P;,
say, Py, that is the probability for the energy of a box to be on the 8th level. We will do this
summand by summand. The first summand is F. For its derivative with respect to Py, we get by
using (7):

(11)

. PP gyp sp P,
= = P, + InPy = — + InPy = InP; + 1
] 5P, 5P,  oP, P,

OF
oP

The derivative of the second summand (alpha term) with respect to Py is alpha; the derivative
of the third summand (beta term) with respect to Py is beta times Eg4 , since both Eg and
overlined E are constant with respect to a change in the value of P,

For the derivative of F” with respect to Py, which we set equal to zero (since we are interested
in the maximum), we hence get:

(12)

SF'

8—8=lnP8+1+a+BEEs=O
or
(13)

In Py = -(1 + a) - BE;
or
(14)
Py = e (0 o s _ % e P

Euler’s number, raised to the power of -(1+ alpha), has been replaced by a term 1/z (by
convention). The function z is called the partition function.

Since Pg can be replaced by any other energy level P,, we may formulate in a general way:

(15)



This is Boltzmann’s distribution of energies: For every possible level of energy E; of a box, a
definite probality P, (which is the occupation number of this energy level, divided by N, the total
number of boxes) is given by the equation. The various probabilities of the many (possible)
individual energy levels of a box yielded by (15) constitutes the special arrangement of
occupation numbers of energy levels which, under the two constraints, comprises the maximum
number of variants and is therefore the most likely one.

Equation (15) gives the special distribution of occupation numbers of energy levels (divided by
N) whose number of variants is the biggest in comparison with other distributions one might
think of. As stated above, an occupation number of a single energy level, divided by N, is called
the probability for a single box to find itself on that level. Note that (15) does not give any clue
as to HOW much bigger the number of variants is (in comparison with any other distribution of
occupation numbers). One may criticize the reasoning for this lack of information, and assert
that the proof of a usefulness of (15) is incomplete. One could, though, show that the number
of variants drops sharply when considering any other distribution of occupation numbers.

As a consequence of Stirling’s approximation that we used, the different energy levels are
equidistant from each other.

ee) We may further write:
(16)

X=X e

i z

For the average energy of a box, we may write:

(17)

E=E?_\;Ei=2PiEi=E lEie_BEi
i i i Z

Since z is, by above definition, equal to Euler’s number raised to the power of (1+ alpha), and
since alpha does not depend on the possible energy level considered, z can be treated as a

constant. In other words: 1/z can be factored out in (16). We may hence determine z as follows:
(19)

z=Y, e P
i

This is the general expression of the z-function (partition function).
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For the derivative of z with respect to beta, we get from (19):
(20)

oz -BE,
%2 - YE i
58 E ¢

Multiplying both sides of the last equation by 1/z gives:
1)

1 &z 1 -BE, =
S % Y EeM - E
z 8B zi:z !

Since (because of d In z/dz=1/z) the left side of (21) can be expressed by a logarithm of z, we
may write:
(22)

ff) We will now determine beta. For the average entropy S of a box, we may write (no proof
shall be given for this famous equation of Boltzmann’s):
(23)

=-)Y P, InP,

B
k 7
The constant k is Boltzmann’s constant. We may re-formulate this with the help of our
equations for the average energy of a box (that is, Equation 21), for the probability P, , and for
the sum of the probabilities:
(24)

1 g 1 g
=Y P, P = —Z; e " (-BE, - In 2) =E; e i BE, + In 2)

i

x|t

—BE+LlmzY e -BE +Inz
z i

When forming the differential of dS, we get (making use of Equation 22):
(25)

8_:=[38]_Z+ESB+SIHZ§—E=B8F+ESB_E8B:BSE
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On the other hand, dS=dE/T or dS/k= dE/kT. We thus obtain from (25):
(26)

¢) Derivation of the numerical value of the z-function; Liouville’s theorem

aa) As a next step, we determine the numerical value of the z-function (appearing in the
Boltzmann distribution) for a gas. That is to say: The role of a single “box” is, from now on,
played by a single particle or molecule. In the previous sections, a box was defined as an entity
having a discrete energy level that it had aquired as a result of a distribution process of energy
bits. The number of “boxes” N was much bigger than the number of possible energy levels.
Consequently, on all energy levels, one could find several boxes (and not just one single box).
For instance, n, was the number of boxes that found themselves on the third energy level. Since
we are now dealing with a gas, we replace the boxes by molecules: Each molecule (of which
there are N all together) finds itself on one of the many discrete energy levels (of which there are
much less than N).

We shall assume that the molecules (or particles) which make up the gas do not exert attractive
forces on each other.

For the purpose of determining the numerical value of z, that is, for the purpose of finding
another expression of the right side of (19), we we will (as a first step) prove that the following
equation is equivalent to (19) (the variable x denotes one of three spatial coordinates in a
Cartesian system of coordinates; p,, which can be numerically positive or negative, denotes the
component of the momentum in the x-direction possessed by a single molecule; E, is the
possible magnitude of one direction component of the kinetic energy of a molecule; C is a
constant):

(27)
h o _E, h o _ p;
=C[de [dp,e ™ =C [ax [ dp e ™
z, { fw . e { fw . e

For the time being, we are interested in the x-component of motion of particles only. This is why
z has an index x, denoting that the partition function z, is the partition function for the
distribution of one single spatial component (the x-component) of kinetic energy only. We give
ourselves permission to presume that the total kinetic energy of all particles in one spatial
direction is constant, and is one third of the total kinetic energy of the gas.

All particles shall find themselves in a cube-shaped container. The term h shall be the length of
one side of the cube. The integration of dx in (27) extends from zero to h. Since, for the time
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being, we are interested in the x-direction of motion only (and not in the y- or z- direction), the
first integral does not extend over the whole volume of the container, but only over its x-
dimension, that is, over its height. The other directions will be given due consideration later on.

The possible energy E, of a particle can be replaced by p,*/2m (with m denoting the mass of a
particle, and with p, denoting a possible a momentum of a particle in one direction).

(27) is equivalent to (19) because of:
(27a)

As in (19), the subscript i denotes any of many discrete energy levels of a single molecule
(equidistant from each other in terms of energy, and not in momentum). We imagine that p, and
x constitute the two horizontal axes in a three dimensional Cartesian system of coordinates, with
the exponential term constituting the vertical axis. In the case of a double integral, the horizonal
plane defined by the two horizontal axes forms a “chess board” with many squares dxdp, of
identical shape, the area of each of which is vanishingly small. In the case of the sum (with the
exponential term times Delta x Delta p, as a summand) appearing in the second line (as an
approximation to the double integral), the “chess board” does not present exact squares, but
areas of equal size (magnitude) whose shapes may be squares or rectangles that may differ from
each other (the variability of the shape being due to the fact that the steps considered within the
sum are equidistant in energy and not in momentum). Different from the case of an integral, the
size (magnitude) of an area does not vanish.

In both cases, the exponential term in (27a) yields the height of a “roof” above a given area (of
rectangular or squared shape) which we imagine hovering above the “chess-board”. Moreover,
both the double integral and the sum appearing in the second line give the volume that extends
between the “chess-board” and the roof. The two volumes do not differ much from each other,
if the number of summands that make up the sum is big enough. Different from the case of an
integral, the size (magnitude) of an area does not vanish.

If both sides of (27) or (27a) are raised to the 3Nth power, we get:
(28)

hhh oo 3NE,

2V = CN[[[of [ [ @™ a¥p, e T

000 —00—00 —00
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2 2 2
hhh 0 o o _N(px1+px2+px3)
= OV [[[f [ [~ dM% @, e
0 0 0 —00 —00 —00
2
h = _ Py

= [C f f dx, dp_, e 2mkT 13N
0 -

E E

Xj *j

~ (C E e_ﬁ AxApx)3N - (E e_ﬁ)C%N

When presuming that no direction is privileged, x can be replaced by y or z. Instead of using
X,Y,Z as coordinates or directions, the terms x,,X,,X; are used for the same purposes. The term p,
denotes the component of a momentum of a molecule in the x;-, X,- or x,-direction (that is, in
the x-,y- or z-direction). Like before, E_denotes the magnitude of the component of the kinetic
energy (in the direction X, X, or X, ) that a molecule may be in possession of. E_ thus ranges
from 0 to (almost) infinity. The last two lines of (28) are accounted for by the fact that all
members of a group of integrals (their number being 3N in each of the two groups) that appear
in the first two lines are equal to each other.

bb) At first sight, however, (27a) or (28) do not seem to yield a useful value of z, since the
product Delta x Delta p, may apparently take on an arbitrarily small (constant) value, thus
entailing that the number of possible energy levels that have to be added up, and hence z,, is
enormously large (exceeding all limits). (In case we applied the principles of quantum
mechanics, we would, of course, know that Heisenberg’s uncertainty principle guarantees that
the product Delta x Delta p cannot vanish.)

Liouville’s theorem comes to the rescue: Though dxdp, may shrink to any arbitrarily small
value, the product Delta x Delta p, cannot. This shall be explaned in greater detail:

According to Liouville’s theorem, the product d*™x d*™p, (that is dx,dx,dx,dp,,dpdp,, for the
first molecule, times dx,dx,dx,dp,,dp,,dp,; for the second molecule, etc) is independent of
time, provided the energy of the system stays constant. Setting the product d*™x d*"p, equal to
a constant is, as will be shown below, equivalent to saying that in six-dimensional phase space,
the “swarm” of N mass-particles behaves like the flow of an incompressible liquid. Hence, the
magnitude of the product d**x d*"p, is also independent of the variant of an arrangement and
also of the arrangement of occupation numbers itself.

Liouville’s theorem shall be elaborated. Let us define a parameter H (called Hamiltonian) in the
following way:
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2
H=Y Gmi+Ue) =Y Gm? + Ue) = G- + U)

2m

Partially differentiating H with respect to a single p , that is, with respect to the momentum
component in one direction of a single particle of mass m, gives:
(28b)

Partially differentiating H with respect to a single x , that is, with respect to the spatial position
of a single particle, gives (F is force on a particle):
(28¢)

One should also note that, even if dH (the total differential of H) is exaxtly zero (which is the
case if the total energy of the system, kinetic and potential, stays fixed), partial delta H may
nevertheless be different from zero, since we are considering the change brought about by the
motion of one single particle only.

We shall now imagine that each of the many particles is moving in a six-dimensional phase
space. That is to say: Each particle has, at any moment in time, six coordinates, which are x, y,
Z, Py, Pys P, (For a short while, we will use x,y,z instead of x,, X,, X;.)

At a later moment in time, the single point that represents that particle in six-dimensional phase
space may have shifted. If there are many neighbouring points (in six-dimensional phase space)
which each represent a particle, we are confronted with what we may call a “flow of stuff” in the
six-dimensional phase space. We would like to find out whether or not the number of points in
a stationary (six-dimensional) volume element (of constant volume, shape and position) stays
constant over time. We presume that, at a given moment in time to start with, the density of
points in phase space does not change abruptly near the volume element and is homogeneous in
its interior. We further assume that this absence of any abrupt change will be the case during the
whole interval of time in which we are watching it. We also assume that neither the position nor
the momentum of a particle near or inside the volume element will change abruptly with time.
That is to say: The density of points as well as positions and momenta of particles shall be
differentiable with time. This assumption is by no means a daring one: It follows from the fact
that the points would not be located at close distance from each other in phase space (as they
are), if there were abrupt changes in position or velocity between them.

If, for a better illustration, we reduce the dimensions from six to merely two (this is for a short
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while only), that is x and p,, we would get for dZ/dt, that is, for the increase or decrease in the
number Z of particles in the two-dimensional “volume” element over an interval of time (A is
a factor that is an expression of the particle density in phase space; without any further

knowledge, all parameters could depend on position in phase space and on time):
(28d)

vhor122 _vhorizl Vvertic2 vverticl

(ept) + (x.p0]

2 71 x, Fx

dz
——(xpl) = A Dot
dt(xpx ) = Axp0) [

&% op,
= AP0 [o@pt) + —(xp 0]
ox op

X

The equation is based on the assumption that a large number of particles find themselves within
the volume element and nearby. Horizontal velocities v,,,;, and vertical velocities v, refer to
velocities of particle points in the two-dimensional diagram in which the horizontal axis stands
for the direction x, and the vertical axis stands for the x-component of momentum p. The
subscript 1 refers to the location where particle-points enter the fixed volume element. The
subscript 2 refers to the location where particle points-leave the volume element. We also
assume that the changes in velocities from particle to particle at a frozen moment in time apply
to a great number of particles which behave the same way.

When returning to six dimensions (instead of just two), we have:
(28e)
az %L, 8, P, %, O,

ar & oy &z op, Spy op,

Making use of (28b) and (28¢), (28e) turns into:
(281)
az 4 0 OoH 0 OH 0 OH
- = + — +

5 8H _ & 8H _ & OH

dt ox op, oy % oz Op, a o % 8—y op, 5z

or, after re-arranging the order of summands:

(282)
dZ & OH 8 OH 8 OH 8 OH 8 O0H 8 OH
SR a2 - S0y (2 L 0 0, (2 2T 0 Oy g
dt ox op, Op, Ox Sy Spy 8py Sy 6z op, Op, Oz

Since the order of partial differentiations can be reversed without affecting the result, each of the
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three brackets is zero, and so is the whole sum. Given the number of particle-points in a fixed
six-dimensional volume element of phase space does not change with time, A (which is an
expression of particle density in phase space) does not depend on time.

With the density of particle-points in phase space being constant over time, the ensemble of
points in six-dimensional phase space behaves like an incompressible liquid in real space that
has a homogeneous density. Note that (28g) is valid in the interior of a “lump” of particle points
only, and is not applicable right at the surface of the lump, where H is not differentiable.

Also note that there may be different “lumps™ of particle points at the same time that have
different homogenous densities in phase space (similar to incompressible liquids in real space,
which, too, come in different densities).

One can go a step further by replacing the six-dimensional phase space with a 6N-dimensional
phase space. Then a whole lump of N particles is represented by a single point that has 6N
coordinates. Other lumps (“colleagues”) of particles containing the same number of particles are
represented by other points. The flow of those points, too, behaves like an incompressible
liquid. Nevertheless, we confine ourselves to considering points that move in the sixth-
dimensinal phase space, each point thus representing a single particle. We then have (there are
N particles; x is the spatial coordinate, p is the momentum, the subscript j refers to the three
directions in space, that is, the x-, y, and z-direction ) :

(28h)

dd) For a better illustration of (28h) and its consequence, we once more return (for a short
while) to the two-dimensional phase space described by (28d). We imagine a diagram in which
the horizontal axis is x and the vertical axis is p,. Over time, all the points in the plane (defined
by the two axes of the diagram) move. But since the divergence of the flow of points (in the
stationary surface area considered) is zero, the density of points in the plane of the diagram stays
fixed.

This is proof of the validity of Liouville’s theorem in two-dimensional phase space.

This being the case, each of the many points in the plane can be given its own little surface area
(of squared or rectangular shape) in the plane, with all surface areas having the same non-
vanishing size (magnitude), and with no area left over between the squares. Due to the
“incompressibility of the two-dimensional liquid”, the size of the areas does not change when
the points are moving with time.

In order to conclude our train of thoughts and to return to our gas, an additional assumption
must be added: We have to presume that, at some point in the past or future, the density of the
ideal gas we are considering is not infinite in phase space. This being the case, it cannot be
infinite in phase space at any point in time, and can thus not be infinite at the point in time we
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are scrutinizing it.
This is proof of z, (appearing in Equation 27, 27a and 28) being finite.

ee) Let us now replace the two-dimensional phase space by 6N-dimensional phase space. The
squares of constant size would then be replaced by 6N-dimensional “cubicles” d*™x d*p, of
uniform size (and of uniform shape) that cannot shrink indefinitely. Here, too, a point in its
“cubicle” can be thought of as being smeared out to form a (6N-dimensional) paste that fills the
whole “cubicle”.

Equation (28) is thus equivalent to the general expression for z, namely (19).

ff) As a next step, the double integrals in (28) and (27) shall be solved. When solving the double
integral in (28)(with V denoting the - external — volume of the gas the shape of which shall be
cubic), we get for (28):

(29)

2 2
2 _ P o P «
[C ff dxl dpx] e mkT ]3N - [CV1/3 f e 2mkT dpx1]3N - [CVIBf (2mk 12 e_q2 dq ]3N
1 oo

—oo

The first integral, that is the integral of dx,, is equal to V'? or to the length of an arbitrarily
picked side of the cubic box. The variable q is an auxiliary variable that substitutes p, by being
defined as q*>=p,?/2mKT.

Due to the fact that the integral of e ¥ dq, taken from negative to positive infinity, is equal to the
square root of pi, we get for (28) and hence for (29):
(29a)

ZjN _ [CV1/3f' (2mk 12 e—q2 dq ]3N — [CV1/3 (2nmk]')1/2]3N — C3N 144 (27'l:mk 3N/2

or
(30)

z, =C V3 (2rmkT)?

We have hence solved our task of determining the constant z,. Since C is finite (as has been
shown), the adding up of all possible, discrete energy levels does not yield an infinite sum
(contrary to our first impression). Consequently, the number of possible energy levels is limited.

[It was U. Hoyer who pointed out that the principles of quantum theory could have been
discovered even prior to the scrutiny of black body radiation, namely in connection with
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Boltzmann’s distribution of energies (see U. Hoyer, “Ludwig Boltzmann und das
Grundlagenproblem der Quantentheorie”, Zeitschrift fiir allgemeine Wissenschaftstheorie, Vol.
XV, 1984, pp. 201-210). Nevertheless, Hoyer’s view differs from the one presented here: In the
face of our Equation 28, his train of thoughts would lead to the assertion that the product of the
differentials in our Equation 28 must be given a non-vanishing value for purely statistical
reasons, that is, in order to do statistics at all, with nothing in nature requiring that the phase
space volume thereby described cannot be smaller (p. 210, my own translation from German):
“Heisenberg’s uncertainty relations are not an expression of a general uncertainty of
measurements, but are consequences of a necessity for partitioning phase space when it comes
to treating atomism statistically.” But it is Liouville’s theorem and not our desire for doing
statistics that requires us to consider the product of the differentials as non-vanishing.
Liouville’s theorem, in turn, is derived from Newton’s mechanics.

Since nature thus requires us to treat a product of differences as a constant, it seems that nature
does not only consist of tangible things, that is things which have mass and therefore energy, but
also of mathematical abstractions as separate entities. For, given that the partitioning of phase
space is a mathematical operation, and given that this partitioning is nevertheless part of nature
and not just part of our pure imagination, the first part of Hoyer’s discovery, that is the
recognition that the product of differences in Equation 28 must have a non-vanishing value, is
hence evidence of a mathematical universe postulated expressis verbis (although at a later time)
by Tegmark and others. But it had been U. Hoyer who had paved the way for the “mathematical
universe” by his under-rated discovery.]

d) The derivation of some other parameters of the gas

aa) Inserting (30) into (15) and making use of (26) gives the probability distribution for the x-
component of kinetic energies:

(30a)
E, -E,
c, C — C —
ap -9 -2 gy - 2 e ¥4E, - SR
N z, Cl V1/3 (211:ka)1/2 V1/3 (275ka)1/2

The constant C, plays the role of a norming constant, since the integral of (30a) has to be equal
to unity.

When forming the integral of (30a) from zero to positive infinity, and setting it equal to unity,
the constant C, is found to be equal to V' (2 pi mkT)"? (kT)". The integral cannot be taken
from negative infinity to positive infinity, as it would then be divergent.

Hence, (30a) is turned into
(30b)
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For the average kinetic energy of a particle in the positive x-direction, we get from (22) [if beta
is replaced by (26), that is by (kT)™, z_is replaced by (30), and if assuming that C, V, and m do
not depend on T and hence on beta):

(30c)
— 8 Iy BQumkry) __BUnCV") + FinCam) + ZB - 3(-5inf)
x op 5B 5
111y
2B

But when determining the average energy E_by taking the integral of the product of (30b) and
E,, we would get:

(30d)
N dn 1 =
E =(Em 2 = [ E ¢ dE = kT
X {x()N {kT X X

The only way to prevent a contradiction is the following: in (30d), a factor of 1/2 has to be
placed in front of E,. Without this correction, both kinetic energy of motion in the positive x-
direction and also kinetic energy of motion in the negative x-direction are distributed among al//
particles (as a result of the integration from zero to infinity), just as if a single particle could
carry both of these two energies. In other words: In (30d), E, is treated as being equal to E_, +
E, . By introducing the factor 1/2, (30d) turns into:

(30e)

. E,
dn _ 0 1 p Egp -

1
— —kT
N 5 2kT ~ o2
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For the average “energetic velocity”, that is, for the square root of the average square of v, we
get from (30d) and (30e):

(30f)

bb) In order to obtain the distribution of velocities (rather than kinetic energies) from (30b), dE
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is replaced by mv dv, according to the rules of differential calculus, and E in the exponent of
(30b) is replaced by 1/2 mv2. We then get from (30b):

(30g)

2

my,

mv -
ap - 4 s g,
N kT x

The integral of (30g) amounts to unity when extended from zero to positive infinity.

For the average velocity in one direction, we get from (30g) (instead of the factor of 1/2 that was
used in Equation 30e, a factor of 272 is now used, given that energies and not velocities are
counted twice if no correction is made):

(30h)
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cc) If one is interested in determining the z-function not only with respect to the Boltzmann
distribution of a single direction-component of the kinetic energy, but with respect to the
Boltzmann distribution of the fofal kinetic energy, we take the N-th root (not the 3N-th root) of
(29a). We thus get:

(31
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This is the z-function for any system of elements whose randomly distributed energy is kinetic
energy that has three direction-components.

e) Deriving the general gas law

We will now derive the general gas equation (in doing so, I am still following a thread laid out
by L. Susskind in his online-lecture on Statistical Mechanics at Stanford University). (24) can
be re-written as (replacing beta bei 1/KT):

(32)

BE + In z

>t

— +Inz
kT

or (multiplying by T):
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(32a)

~|
= | =

+Tlnz

or:
(33)
E-TS = -kT'ln z

Next, we will consider an adiabatic change of state in which entropy S stays fixed. For the total
differential of the energy E of the gas (which shall depend on T and V) we have:
(34)

dS OF )dT

OF OF OF
dE) = (—)dV —)dT = (—=)dV
(S (SV; " ) (SV; +(8T8SV

oT v

Dividing by dV gives:
(35)

OFE 0S OE | dT
e o

(% ¢
dlV s oV r 0T oS v dV

Since the change in state shall be adiabatic, we can formulate:

(36)
as = (B ar+ (B yar-o
oV r oT v
Dividing by dV gives:
(37)
oS oS | dr
- + — — = 0
( SV; ( oT 1)/ dv
Hence

(38)
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dr _ 85\ 1 8S \
dv ( oV 3’ K oT I)/]
Inserting (38) into (35) gives:
(39)
dE OF &S O0FE OFE oS

The partial derivative dE/dS was replaced by T.

Moreover, for an adiabatic change of state, the principle of energy conservation requires:
(40)

dE = pdV

or (with p denoting external pressure and no longer momentum):

(41)
_ . OE
Py
Inserting this into (39) yields:
(42)
dE OF oS 8(E - TS) dInz NkT
(—=)=p=-(—=)+(—=)T=-(——*) = NkT =
Car k™2~ ) Gy T - ) 7

The substitution of E-T'S by -NKT In z in (42) is in accordance with (33). Since (33) denotes the
entropy of a single box, the factor N has to be introduced into (33) in order to apply (33) to the
gas as a whole. The derivative of In z with respect to V (appearing in Equation 42) is simply
1/V. This is because z is given by (31), so that the derivative of In z with respect to V is equal

to the derivative (with respect to V) of
(42a)

Inz=1nC3? +In ¥V + In [QumkT)*?]

But of the three summands, it is only In V that depends on V. Hence the derivative of the above

sum (that is, the derivative of In z) with respect to V is 1/V. This explains the equality of
d In z/dV and 1/V on the right hand side of (42).

(42) can be re-written as:
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(43)
pV = NkT

This is the general gas law.

f) Replacing point masses by extended objekts (spheres)

aa) So far, it has been left undecided whether the molecules have a size different from zero, or
whether they are just point molecules. If one assumes that their size is different from zero, the
above equations are nevertheless fully applicable. This is because Liouville’s theorem does not
only pertain to a “swarm” of point particles, but to a “swarm” of spatially extended particles as
well, since all positions occupied by the point-like centers of the spatially extended particles in
phase-space may as well be occupied by pure point particles.

Even mutual collisions of molecules do not jeopardize the validity of Liouville’s theorem: On
our path to Liouville’s theorem we formed partial derivatives of the Hamiltonian H, with the
spatial positions of all particles — except one particle — being fixed. This is why the partial
derivative of H with respect to the position of that particle (which boils down to the partial
derivative of the potential energy of the particle with respect to its position) yields the correct —
and finite — force the particle is subject to at any instant of time or spatial position considered.
Moreover, since a collision with another particle is nothing but a situation in which the particle
considered finds itself in the repulsive force-field of another particle, a collision occurs over a
period of time and a length of a spatial path that are not vanishingly small. Consequently, the
derivative of the momentum of a particle with respect to time (that was used above) does never
yield an infinitely large numerical value.

Since the mutual repulsive forces of the molecules can be assumed to act over extremely short
spatial distances only (much shorter than the distances over which the mutual attractive forces
— if any — can be supposed to act), the neglection of potential energies they generate cannot
affect the result of distribution of energies obtained above. Instead, at any moment in time
picked, practically all molecules are so far apart from each other that practically all molecules
are in possession of a potential energy of zero.

Moreover, the volume V appearing in (31) and in equations of higher number is not affected by
the introduction of particles that have a spatial extension, provided the diameter of a single
particle is very small compared to the length, width or height of the container. In other words:
Though the center of a particle that is spatially extended cannot reach the wall of the container,
and though this reduction in the spatial range of a molecule’s motion leads to a reduction of the
effective volume of the container, that reduction is minuscule if a particle is very small in
diameter compared with the size of the container. In other words: From a statistical perspective,
it is only the space volume

rdA

inner surface A of container
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that has to be subtracted from the available volume V of the container (with r being the radius
of a spherical model particle), and not the proper volume of the molecules.

bb) However, when it comes to gases of higher densities, the general equation of the ideal gas
yields results that deviate considerably from empirical reality. In those cases (in which the
diameter of a single particle is still very small compared to the length, height, and width of the
container, but in which the combined volume proper of all particles is not small compared to the
volume of the container), reality is better described by

(44)

p (V-b) = NkT

with b denoting a positive term bigger than zero.

From this follows: When dealing with a real gas that is made up of spatially extended
molecules, the real distribution of energies must differ considerably from Boltzmann’s
distribution!

In other words: When observing a gas (confined in a box) over a very long period of time, each
spatially extended particle, that is, its center, has visited all cubicles the box is subdivided into
in our imagination, and the number of visits is practically the same for every cubicle. At a given
total energy of the gas, it cannot, for these numbers of visits and their durations, make a
difference as to whether or not the particles are spatially extended.

cc) Consequently, the slightly higher pressure (compared to an ideal gas) at a fixed volume of
the box and a fixed temperature of the gas cannot be blamed on the proper volume of the
particles.

It must be blamed on a deviation from Boltzmann’s distribution of energies and velocites,
instead. As was shown in (30h), the average velocity of a particle in one direction — under the
rule of Boltzmann’s distribution of energies and velocities — is only 88 percent of the average
“energetic velocity” of a particle in that direction. In case the real distribution of velocites were
somewhat more even than Boltzmann’s, the average velocity of the particles in one direction
and hence the pressure exerted on a wall would, at a fixed average energy of the particles and
hence at a fixed temperature of the gas, be somewhat higher than it is under the rule of
Boltzmann’s distribution and hence under the rule of the general gas law. More precisely: Since
the pressure on the walls of the box is proportional to the square of the average velocity in the
direction of the normal of the wall, the pressure at a given density and a given temperature of the
gas would increase by the factor of (0.88)* = 1.29 (even for a gas made up up extensionless
point particles) in case the distribution of velocites were perfectly even, that is, in case all
particles had the same velocity.

dd) A mechanical explanation for the obvious deviation from Boltzmann’s distribution (towards
a more even one) is the following: The mechanism of energy distribution has a memory of the
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fact that in the recent past a very fast molecule has absorbed energy over average. This is
because the fast molecule’s chances of absorbing, by means of the next collision with another
molecule, an energy quantum (that will increase it kinetic energy) are slimmer than those
chances are for a molecule whose kinetic energy is very low (so that it is almost standing still).
As a consequence, the precondition of our derivation of Boltzmann’s distribution, that is, the
principle of random distribution of bits of energy among molecules (under certain restrictions)
regardless of what kinetic energy they are in possession of, is not strictly obeyed.

ee) This result is getting support from an argument forwarded by Sorin Cosofret (About kinetic
molecular theory, states of matter and nuclear reaction in stars, 2018, p.3 ): If the velocities of
molecules that constitute a gas were distributed in accordance with Boltzmann’s distribution,
there would be, at any time, a small fraction of molecules with extremely high velocities and
hence with extremely high kinetic energies. This would inevitably lead to a destruction of the
walls of the container that are housing the gas. No molecule of the wall material could stand the
impact of those high energy gas particles, but would be forced to leave its position in the lattice.
But such a destruction of the container walls has never been observed.

g) Proof a of a stratification of temperature in a heavy gas if Boltzmann’s law of
distribution of energies is not observed

aa) The unrestricted validity of Boltzmann’s distribution of energies, however, is a necessary
condition for the temperature of a gas in an external force field to be the same at all heights. A
proof of the sameness of temperature at all heights on the basis of Maxwell’s-Boltzmann’s
distribution was provided by A.J. Walton (Alan J. Walton, Archimedes’ principle in gases,
Contemporary Physics, Vol. 10 — 1969 —, p. 185), by Claude Garrod (Statistical mechanics and
thermodynamics, Oxford University Press, 1995), and also by K. Zhang / Y .-J. Zhang (Principle
of detailed balance and a dilute gas in gravitational field, arXiv:1607.06692v3 [cond-mat. stat-
mech] 30 Nov 2016).

Walton’s train of thoughts shall be displayed in a somewhat modified form. Imagine a layer of
gas right at the bottom of a container. Let the temperature of the gas in this layer be T,. The x-
direction shall be the direction of the normal of the bottom. The average kinetic energy in the x-
direction of motion in the fictive case that every particle had kinetic energy both in the positive
and the negative x-direction (see above) amounts to kT,.

Now imagine a second horizontal layer of gas (of the same thickness) at some height h above
the ground. All the particles in that layer are those whose kinetic energy in the x-direction, when
finding themselves in the bottom layer, is bigger than the difference in potential energy between
the two layers. This difference shall be labelled E,,.. For the average kinetic energy E of the
particles (in the x-direction of motion) in the upper layer we then find from (30b) and (30d):
(45)
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N is the total number of molecules; all molecules are given consecutive numbers in the order of
their kinetic energies in the x-direction which they are in possession of at the bottom. The
number n, is given to the molecule whose kinetic energy in the x-direction (at the bottom) is just
big enough to reach the upper layer. The integral below the big fraction line gives rise to the fact
that the total number of particles whose kinetic energies in the bottom layer are in the range
between E,,, and infinity is not N, but is N-n,,.

In other words: Given Boltzmann’s distribution of energies is applicable, the assumption of the
uniformity of temperature in a column of gas (subject to gravity) at all heights is justified.

In case the real distribution of energies is more even than Boltzmann’s distribution, the
temperature of the gas in the column declines with height. In case the real distribution of
energies is less even than Boltzmann’s distribution, the temperature increases with height.

Since the real gas — that is made up of extended particles — does not strictly obey Boltzmann’s
distribution law for energies, but shows a more even distribution, it follows that there cannot be
a homogeneous temperature of the gas as a state of equilibrium in an insulated column subject
to gravity.

bb) A similiar result, that is a result that defies Boltzmann’s distribution of energies as a
stationary state when gravity is at play, was obtained by L. Susskind. In his own words:

“Gravity has all kinds of problems with thermodynamics, even just Newtonian gravity.
Newtonian gravity does not have a good thermal equilibrium. ... Gravity itself is a disastrous
thing when you are thinking about thermal equilibrium.” It “cannot correspond to a genuine
equilibrium situation. ... Systems with negative specific heats cannot be in equilibrium with their
environment. ... Thermodynamics breaks down eventually for systems with gravity.”

I11.
1) Attention shall be drawn to the experimental work done by Roderich Graeff ' over many
years concerning temperature differences in gases and liquids subject to gravity [see R.W,
Graeft, “Measuring Temperature Distribution in Gas Columns” (2015), first version published
in: D. Sheehan, editor, Quantum Limits to the Second Law, First International Conference on
Quantum Limits to the Second Law, San Diego, California, 28-31 July 2002, AIP Conference
Proceedings 643, pp. 225-230; see also R.W. Graeff, My path to Peaceful Energy, 2010].
Graeff’s theory of a temperature gradient by which he explained his positive experimental
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results could be quantitatively correct (only) in case the distribution of energies of the molecules
were almost even.

2) A temperature gradient was also found experimentally by Chuanping Liao ' [“Temperature
Gradient Caused by Gravitation”, International Journal of Modern Physics B, Vol. 23, No. 22
(2009), pp. 4685-4696]. His theoretical proof of a temperature gradient can be contested,
though:

Let us imagine that two long, horizontal pipes sitting at different levels of height are connected
to each other by means of a vertical pipe. Let us further imagine that the volume of a unit mass
of an ideal gas is big compared to the volume of the vertical pipe. That ideal gas shall be
supposed to flow through the system of pipes, moving upward when it comes to flowing through
the vertical section. Given no heat is added or withdrawn from the gas — neither from the
ambient nor from other parts of the gas (adiabatic change of state) — , the principle of
conservation of energy gives:

(35)

U, - Uy) + )V, - p,V) = gh, - gh

U, is the internal energy of a unit mass of the gas in the lower horizontal pipe, U, is the internal
energy of the unit mass of gas in the upper horizontal pipe. The work p,V, (with V being
volume per unit mass, and p being pressure) is invested in the system when the unit mass of gas
is isobaricly pushed into the vertical section. The work p,V, is given off by the unit mass of gas
when it, leaving the vertical section, isobaricly shifts an imagined piston in the upper horizontal
pipe. The right hand side of the equation denotes the gain in potential energy per unit mass (g is
gravitional acceleration, h is height).

A re-arrangement of (55) leads to:
(56)

(U2 + p2V2) - (Ul + prl) = - (gh2 - ghl)

or
(57)

d(U+pV) = d(U+RT) = d(C,T+RT) = -gdh

C, is the heat capacity per unit mass at constant volume. The replacement of pV with RT
follows from the general gas law (with R being the gas constant, and T being temperature).

In order to replace R, the following equation is used:
(58)

_ dpy) _
Cp_ V—W—R
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C, is the heat capacity per unit mass at constant pressure. The equality of the left hand side of
(58) and its middle part follows from the principle of conservation of energy; the equality of the
middle part and the right hand side of the equation follows from the general gas law when it is
differentiated.

(57) hence turns into:

(58)
d(U+pV) = d(C,T + RT) = d(C,T + C,T - C,T) = C,dT = ~gdh
or
(59)
a _ _ g
dh C,

This is the adiabatic lapse rate of temperature with height.

The equation does not change when all layers of gas in the vertical section are assumed to be in
hydrostatic equilibrium, which means that their velocity of ascension is constant, and may be
vanishingly small. But this does not entail that, in order for a layer to be thermally insulated (this
was the starting point of the derivation), one could waive the two comoving, insulating
bulkheads that separate the layer from its two neigbors. But this is what Liao (wrongly) regards
as a consequence of a hydrostatic equilibrium.

Moreover, Liao’s lapse rate is quantitatively wrong as he, in our Equation 57, that is, in his
Equation 5, wrongly introduces another summand on the left side, namely the summand -Vdp.
This error was carried into his Equation 5 by means of his Equation 2, in which he wrongly sets
dU=TdS-pdV-Mgdh instead of simply dU=TdS-pdV: A blob of gas ascending at constant
velocity together with other blobs that share the same velocity of ascension does not “know” if
or not it is moving in the vertical section or is standing still; in both cases, it will only “notice”
a change in pressure and volume, and not a gain or loss in potential energy of height. On top of
this, Liao wrongly adds a summand (of inconsistent dimensions), namely (V-dTV)dp, to C,dT
appearing in our Equation 58, that is, in his Equation 6.

Nevertheless, Liao’s experimental work produced impressive results: In a centrifuge he used, he
could establish a permanent temperature difference in solid KI powder of almost 2 degrees
Kelvin (the rotating arm had a length of no more than 15 cm, the maximum rotation speed was
4000 rpm). The difference in temperature was clearly proportional to the rotation speed squared
(see his Fig. 2).

6) Temperature differences between a liquid and the vapor evolving from it
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a) A solution and its vapor

Similar to molecules in a vertical column of gas that have a potential energy with respect to the
bottom, molecules in a vapor that is in contact with the liquid phase have a potential energy
relative to the surface of the liquid phase (from which they rose). The role of gravity is replaced
by a different force field, namely the field of the atttactive forces of the surface, whose reach is
very short. As will be shown below, noticeable differences in temperature between the liquid
and the vapor can occur (see also A. Trupp, “Second Law Violations by Means of a
Stratification of Temperature due to Force Fields”, in: Quantum Limits to the Second Law,
American Institute of Physics — AIP — Conference Proceedings, Vol. 643, edited by D.P.
Sheehan, 2002):

aa) The proof consists in a “reductio ad absurdum”: It starts from the assumption that the vapor
evolving from a liquid solution (e.g., salt in water) has the same temperature as the liquid. Two
principles are applied to this assumption: The principle of conservation of energy, and
Boltzmann’s law of distribution of potential energies among particles whose average kinetic
energy does not depend on height. It is shown that this leads to contradictions.

In detail:

A saturated solution (salt in water) shall have a vapor pressure of 0.5 bar at a temperature of
100° Celsius. (It is well known that solving salt in water leads to a reduction in vapor pressure
at a given temperature of the liquid phase.) We shall, for a short while, suppose that the vapor
(0.5 bar) is as hot as the liquid (100°C), and is hence superheated. During a complete
evaporation of the water (leaving behind the salt) at constant temperature as a first step of a
cycle, the following amounts of heat Q and work W have been given off or have been added
(amounts of work or heat added to the system are given a positive sign in front of the respective
variable, whereas amounts of heat or work given off by the system have a negative sign in front
of the respective variable; the numerical values of all variables Q and W are thus positive
numbers):

(60)

Q W-intern-1 + Q W-intern-extra-1 + Q W-extern—superheated-1 B Wsuperheated -1 + Q solution

= Q W-intern-1 + Q W—intern-extra-1 + Q solution

Qw.incern 18 the amount of heat added from outside in order to compensate for the internal work
done by the molecules when rising from the surface of the liquid in case the liquid is pure water
at 100°C and 1 bar; Qw_ipernexiras 1S the additional amount of heat added in order to compensate
for the work done by extra intermolecular forces that are present in case the liquid is not pure
water, but a saturated salt solution whose vapor pressure at 100°C is only 0.5 bar. The amount
of heat Qy incernexiras can be larger than zero, smaller than zero, or zero (we will have to find out
which of the three alternatives is true). Compared to a saturated vapor of 1 bar at 100°C, the
density q of that vapor (0,5 bar, 100°C) can be assumed to be about 1/2. Q. yern-superheatea- 15 the
amount of heat added from outside in order to compensate for the external work done by the
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superheated vapor (100°C, 0.5 bar) when it is evolving from the surface of the liquid and is
shifting a piston. W, . neatear 18 the amount of that work (of isobaric/isothermal expansion) done
on a piston by the superheated vapor. Qu._extern-superneatea1 @A Wuperneateas are €qual in absolute
amount. Q... 15 the solution heat that comes into play when the salt crystallizes. The right-
hand-side of (60) is thus a short way of expressing all the amounts of heat and work involved
during the first step.

As a next step (second step) of the cycle, the superheated vapor (100°C, 0.5 bar) shall be
isothermally (but not isobaricly) compressed until it is saturated (100°C, 1 bar). For the amounts
of Q and W involved during this step, we get:

(61)

Wcompr—2 - Qcompr—2 - Wcompr—2 - (QW—extem—2 + QW—intem—2) - _QW—intern—2

W compr2 18 the external work of (isothermal) compression. Q,mpr is the total heat that leaves the
vapor during that (isothermal) compression. That heat consists of two parts. The first part, that
1S Qw_externz » 1S the heat leaving the vapor in order to compensate for the external compression
work done on the vapor. The second part, that is Qu._incernz2 » 1S the heat leaving the vapor in order
to compensate for the internal work done by the mutual attraction of the vapor molecules.
Womprz @Nd Qyy o yiernz ar€ €qual in absolute amount. The very right-hand side of (61) is thus a
short way of expressing all the amounts of heat and work involved during the second step.

In a third and last step of the cycle, the saturated vapor (100°C, 1 bar) is made to condensate on
the surface of the pure liquid (100°C, 1 bar). After this has been done, the salt is added to the
liquid (100°C). For the amounts of Q and W involved during this step, we get:

(62)

_QW—intem3 B QW—extern—satur3 + Wsatur3 B Qsolution = _QW—intem3 B Qsolution

Qw.interns 1S the amount of heat leaving the substance in order to compensate for the internal
work given off by the molecules when being absorbed by the surface of the liquid (at 100°C and
1 bar). Quw_externsaturs 18 the heat leaving the system in order to compensate for the external
(isobaric) compression work done on the saturated vapor, W, is the amount of that external
work (of isobaric compression) done on the saturated vapor. Qw_exrernsatars @14 W3 are equal
in absolute amount. Q,.q0n 1S the heat involved when salt is eventually dissolved in the pure
liquid. The right-hand side of (62) is thus a short way of expressing all the amounts of heat and
work involved during the third step.

The overall-sum of the right-hand sides of (60=, (61), and (62) should add up to zero as a

consequence of the principle of conservation of energy. In other words:
(63)

QW—intem—l + QW—intem—extra—l + Qsolution B QW—intern—2 B QW—intern—3 B Qsolution =0
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Since Qw.intern1 AN Qw_interns are equal in numerical value, (63) reduces to:
(64)

Q W—intern-extra-1 = Q W~intern-2

bb) Let us now determine the values of those two remaining parameters in (64)(that should be
equal to each other).

aaa) In order to determine the value of Qi cernextras (that is the additional amount of heat added
from outside during the first step — isothermal/isobaric evaporation -- needed to compensate for
the extra intermolecular forces that are present in case the liquid is not pure water, but a
saturated salt solution whose vapor pressure at 100°C is only 0.5 bar), we use the general
principle that the number of atoms per unit volume in two different regions is n,/n,= ¢ ®*EVET
presuming Boltzmann’s distribution is applicable. With this presumption, there would be a
perfect analogy between an isothermal gas in a vertical column subject to gravity, and the vapor
rising from the surface of a liquid. We would hence find: As regards the potential energy of the
molecules (into which heat has been converted) that rose from the surface of the saturated salt
solution, the difference between that potential energy and the potential energy of vapor
molecules that rose from the surface of pure liquid water at the same temperature (100°C) would
be the same as the difference between the gravitational potential energy of molecules in a
column of gas at height h above the bottom and the potential energy of molecules right above
the bottom of that column of gas at height h=0, given the ratios of the densities and the densities
themselves are the same for the two compared cases (see for this equality: R.P. Feynman,
Lectures on Physics I, chapters 40-2 and 42-1, especially chapter 42-1, page 42-1: “There is a
certain difference, W, in the energy of a molecule in the liquid from what it would have if it were
in the vapor, because we have to pull it away from the other molecules which attract it. Now we
use the general principle that the number of atoms per unit volume in two different regions is
n/n,= e EVK So the number n per unit volume in the vapor, divided by the number ... per unit
volume in the liquid, is equal to ... €"*" | because that is the general rule. It is like the
atmosphere in equilibrium under gravity, where the gas at the bottom is denser than that at the
top because of the work mgh needed to lift the gas molecules to the height h. In the liquid, the
molecules are denser than in the vapor because we have to pull them out through the energy
‘hill’ W, and the ratio of the densities is """ .”).

The density at the bottom of the column of gas — and also the density of the vapor rising from
pure liquid water at 100°C and 1 bar — is q,. We hence get (with q being the density of the gas
in the vertical column at height h and also the density of the vapor rising from the salty solution,
with m being the mass of a single molecule; with T being the temperature; with k being
Boltzmann’s constant; with E ., being the numerically positive potential energy of a single
vapor molecule with respect to the surface of the liquid, where the potential energy is defined to
be zero; with R being equal to Nk; with N being equal to the number of molecules per kmol;
with M being equal to Nm; and with E_, being the potential energy per kmol of the vapor):
(65)

pot
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1 _m_gh _EpaMal
q==4dy=9e 7 =qe ¥
2
mgh = E . . = —lenl
'potMo 2

intern—extra-1

Mgh = E,,, = -RT ln% = 2170 kJikmol = 120 klikg = Q.

bbb) Let us now determine the value of Q2 (that is the heat leaving the vapor during step
2 — isothermal, but not isobaric compression of the vapor — in order to compensate for the
internal work done by the mutual attraction of the vapor molecules). What we get from Van-der
Waals’ equation is:

(66)

=c0

a
QW—intem—2 = f F av = [_

Vl = Vsamrated—vapor

—_—

a
14

N

1

With a=555000 Nm*/kmol? , and with a specific volume of the saturated vapor (100° C, 1 bar)
of 30,157 m*/kmol (with 1 kmel corresponding to 18,015 kg), we obtain:
(67)

o 0M

kmol kg

= 18.40

Q W-intern-2

We realize that Q. interncextras 1S more than 100 times larger than Q2> though the two
parameters should be equal to each other (based on the assumption of a sameness of
temperatures of the liquid solution and the vapor evolving from it).

The hypothesis of the sameness of temperature of a salty solution and its vapor has thus been
subject to a “reductio ad absurdum”.

From this follows: The vapor evolving from a salt solution cannot have the same temperature as
the liquid salt solution.

cc) Conversely, the temperature of the vapor and of the liquid from which it evolves could only
be the same if the inner evaporation/condensation heat Quy i, cerng at @ given temperature of the
liquid were the same regardless of whether or not the liquid contains a solute (salt). Then Q.
intern-extra. WoUld vanish, and no inner contradiction would exist.

But experiments show that the inner evaporation/condensation heat Qg at @ given
temperature is increased by the presence of a solute. E.T. Whittaker, Proceedings of the Royal
Society A, Vol. 81 (1908), p. 21, cited in Bakker, Handbuch der Experimentalphysik, edited by
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W. Wien und F. Harms, Vol. 6: Kapillaritit und Oberflichenspannung, Leipzig 1928, § 4 b, p.
211, set up the following equation for Q. imcern:

H- Td_H
dT

Q W-intern-1 T

H denotes the surface tension of the liquid, T its temperature, k is Boltzmann’s constant. The
specific evaporation/condensation heat at a given temperature is thus increasing in case the
surface tension does.

As regards the effect on the surface tension of a liquid when adding a solute, we find (Bakker,
op. cit., § 5 a, p. 238):

“When adding a dissolving substance to a liquid, for instance NaCl in water, the surface tension
is modified. The surface tension of the solution is larger than that of the pure liquid and
increases roughly proportionally with concentration.”

We thus find: The non-zeroness of Q incernextras 18 NOt only arrived at by an application of
Boltzmann’s law (of distribution of energy) to a column of gas of presumably homogeneous
temperature under gravity (as was done in Equation 65 in accordance with a proposal by R.P.
Feynman), but also by experiment.

dd) As Edwin Edser puts it (Heat for advanced students, Macmillan & Co, London 1923, pp.
188, 189):

“The actual temperature of the vapour above a boiling solution is generally slightly lower than

the temperature of the solution. Thus above a salt solution, the temperature of which is 110°C,

the steam may reach a temperature, say, of 105°C. A thermometer placed in the steam will,

however, indicate a temperature of 100°C. ... As pointed out above, a thermometer when placed
in the steam given off from a boiling aqueous solution of salt, will indicate the boiling point of
the water, and not that of the solution. A similar law applies to solutions in general”.

(See also F. Rudberg, “Uber die Dampfbildung”, Annalen der Physik, Vol. 110, 2nd series, Vol.
34, - 1835 — , pp. 257; J.J. Prechtl, “Uber die Dampfbildung— Aus einem Brief an den
Herausgeber”, Annalen der Physik, Vol. 111, 2nd series, Vol. 35 — 1835 — , pp. 198; Ch.
Drion/E. Fernet, Traite de Physique Elementaire, 3rd edition, Paris 1869, pp. 275/276; M. V.
Regnault, “Relation des experiences...”, Memoires de I’ Academie des Sciences de I’Institut
Imperiale de France, Vol. XXVI — 1862 — , pp. 665; P.A. Daguin, Traite Elementaire de
Physique Theorique et Experimentale, Toulouse/Paris 1861, § 962, p. 349/350; J. Gill, “On the
temperature of the vapours of boiling saline solutions”, The London, Edinburgh, and Dublin
Philosophical Magazine, 4th series, Vol. 32 — 1866 —, pp. 481; G. Magnus, “Uber die
Temperatur der aus kochenden Salzldsungen und gemischten Fliissigkeiten entweichenden
Dampfe”, Annalen der Physik, Band 188, 2nd series, Vol. 112 — 1861 —, pp. 408; see also the
result of an experiment with a saturated salt solution and its vapor in a closed container,
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compared to pure water and its vapor in the same container, performed at the Fachhochschule
Miinster — University of Applied Science — on behalf of the author .; see also the result of
another experiment.)

b) Difference in temperature between a pure liquid and its vapor; Henry Le
Chatelier’s law

aa) Any reduction of vapor pressure at a given temperature of the pure liquid, brought about by
making the surface of the pure liquid concave or by simply making the pure liquid superheated,
leads, for energetic reasons analogous to those displayed in (60) - (67), to a noticeable difference
in temperature between the liquid and the vapor evolving from it, similar to the case of the salty
solution and its vapor.

bb) An augmentation of vapor pressure at a given temperature of the pure liquid, brought about
by making the surface of the pure liquid convex or by exerting pressure on the flat surface of the
pure liquid by means of a second gas, leads, for energetic reasons analogous to those displayed
in (60)-(67), to the phenomenon that the vapor evolving from the surface of the liquid is warmer
than the liquid (see, as regards an increase in vapor pressure by exerting an external pressure on
the flat surface of the liquid, “Miiller-Pouillets Lehrbuch der Physik und Meteorologie”, Vol. 3,
edited by L. Pfaundler, Viertes Buch: Warmelehre, Chemische Physik, Thermodynamik und
Meteorologie, Braunschweig 1907, 4th chapter, § 103, pp. 344/345; see especially N. Schiller,
“Einige Versuche iiber Verdampfung von Fliissigkeiten durch einen hohen Gasdruck”, Annalen
der Physik, Vol. 296 — 1897—, pp. 755-759, where an increase in the vapor density of ether in
contact with its liquid phase by the factor 2.9 was achieved at a given temperature of the liquid
phase by applying a pressure of more than 100 bar; see finally H. Le Chatelier regarding the co-
existence of a compressed liquid and its uncompressed vapor — whose saturation pressure was
higher than that of the vapor evolving from an uncompressed liquid of the same temperature —,
when the pressed liquid was kept at a lower temperature than the vapor, “Uber das
Gleichgewicht chemischer Systeme bei ungleichféormigem Druck”, Zeitschrift fiir physikalische
Chemie, Vol. 9 — 1892 —, pp. 335, 338: “Ich lasse hier den nicht weniger interessanten Fall bei
Seite, wo die verschiedenen Teile des Gebildes nicht die gleiche Temperatur haben. Wenn ich
meine Versuche iiber den Gegenstand, die augenblicklich im Gange sind, beendigt haben werde,
gedenke ich hierauf zuriickzukommen. Ich erwdhne nur die Zunahme des Dampfdruckes einer
Fliissigkeit [by pressing the liquid], welche man abkiihlt, ohne ihren Dampf abzukiihlen, ...”").

cc) In his printed publication ”Notice sur les travaux scientifiques de M. Henry Le Chatelier,
Paris 1897, p. 16/17 (cinquieme loi)*“, the author H. Le Chatelier postulates (as a new law of
equilibrium states in which the liquid and its vapor find themselves at different pressures and at
different temperatures):

(67)

425L%+pV@=o

p
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With L denoting the thermal energy of the liquid (see his page 15, bottom), and with the factor
425 giving consideration to the fact that L is expressed in units of calories, the term 425 L/T
can be replaced by the specific heat capacity C, times the mass M of the liquid. When dropping
the pressure p out of the equation, (67) can hence be re-written as (740 is the density of the

liquid):
(68)
4 1
dl = —— dp = —— d
e, P o ¥

Historically, Le Chatelier’s equation (68) — in the form of (67) — was derived by modifying the
law of chemical equilibrium (see also H. Le Chatelier, “Lecons sur le carbone, la combustion,
les lois chimiques”, nouvelle edition, Paris 1926, 14ieme lecon: “Resume des lois de la
mechanique chimique”, p 355/356). It can, however, also be derived by imagining that the
evaporation of a pressed liquid (be it pressed by means of the surface tension of a convex
surface, or by a gas exerting pressure on the flat surface) is characterized as follows: It is as if —
on top of a regular evaporation of a liquid from a flat surface (taking place at uniform pressure
and at uniform temperature of the liquid and its vapor) — a Joule-Thomson throttling process
were being performed (in combination with a regular evaporation). In a throttling process, the
liquid is pressed through a thermally insulated, porous plug or a membrane at constant high
pressure, so that it leaves the plug as vapor (at a much lower pressure), and is no longer a liquid.
The role of the porous plug is played by the pressed surface of the liquid from which the vapor
is evolving.

Let Uiy pressea denote the internal energy of the pressed liquid. Uy, ynpressea d€notes the internal
energy of the unpressed liquid, provided that, by arrangement, both states of the liquid generate
vapor of the same temperature. The term Piigpressea denotes the pressure of the pressed liquid. The
term p,,,, denotes the pressure of the vapor evolving from the unpressed liquid at given
temperature. V;, denotes the volume of the liquid before evaporation. The density of the liquid
shall be unaffected by the use of external pressure. The term C, ,, denotes the specific heat
constant at constant volume of the liquid. M;;, denotes the mass of the liquid before evaporation.
The pressure p,,,,, may not be exactly equal to the pressure of the vapor (of same temperature)
that evolves from the pressed liquid. Nevertheless, both the internal energies of the two
compared vapors, and also the products pV of the two compared vapors — i.e., the amounts of
external work of isobaric expansion done — must be very similar to each other. This is because
the potential energy of the vapor molecules generated by the Van-der-Waals-forces is small
compared to their kinetic (thermal) energy. This results in a behaviour of the vapor that
resembles that of an ideal gas at a fixed temperature. While the difference between the two
states of the vapor can only be small (if exists at all), the difference between pjgpressea 30 Pyapor
can be chosen at will, and can hence be huge.

We thus have (according to the principle of energy conservation):
(69)

(Uliqpressed - Uliqurpressea) * (pliqpremd - pvapor )Vliq - CV_quMquATqu * Vliqu =0


https://en.wikipedia.org/wiki/Joule�Thomson_effect
https://en.wikipedia.org/wiki/Joule�Thomson_effect

-36-

This equation (69) is equivalent to Le Chatelier’s equation (68).
To elucidate:

— In order to describe the special throttling energetically, the internal energy of the pressed
liquid and of the unpressed liquid have to be considered (by arrangement, both states of the
liquid give off vapor of same temperature). According to the principle of energy conservation,
the (numerically negative) difference in internal energy of the pressed and the unpressed liquid
(first bracket) must equal the extra mechanical work spent on pressing the liquid through the
plug (second bracket times V). The extra work is the work done on the pressed liquid at
constant pressure, minus the mechanical work done on the liquid during a regular evaporation,
when the surface is kept at a fixed position and the bottom of the box — which then acts as a
piston — is being lifted. During this regular evaporation, the pressure on the liquid is identical in
magnitude with the vapor pressure p.,,,,-

— On the other side of the plug, it is as if no work is done by the vapor, since the mechanical
work actually done by the vapor is considered to be the result of the regular evaporation, and is
not given consideration in the analysis of the special throttling process.

Note that — different from a common throttling process — the special throttling is reversible!
Re-arranging (69) leads to (68), that is, to Le Chatelier’s equation.

For Tetralin as an arbitrarily picked liquid, (68) gives a temperature difference of 0.11 degree
Kelvin (between the warmer vapor and the colder liquid) per 1 bar of pressure difference
(between the compressed liquid and the uncompressed vapor).

dd) The augmentation of vapor pressure can be explained by repulsive forces of the molecules:
If the molecules are densely packed (as is the case in a liquid), a potential energy of the
molecules is created that requires the constant “a” in the modified gas law (see above) to be
numerically negative. When a molecule is traversing the convex surface of the pure liquid from
below, thus traveling from a region of higher pressure (below the surface) to a region of lower
pressure (above the surface), its potential energy due to repulsive forces is converted into kinetic
energy, provided the neighboring substance does not exert its own repulsive force on the
molecules. This potential energy (that is converted into kinetic energy) does not depend on the
velocity of a molecule, but on its position. This is why it is evenly distributed among the
molecules, and does not obey Boltzmann’s rule of distribution of energies.

The situation may thus be compared to a gas that, flowing through a horizontal pipeline, passes
through a downward vertical section of the pipeline, in order to pick up its horizontal path on a
lower level. On the lower level, it is warmer than on the upper level, as potential energy — shared
by all molecules regardless of their individual velocities — was converted into unordered kinetic
energy. Likewise, the temperature of the pure liquid is lower than that of the vapor in contact
with the convex surface of the liquid.
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ee) In case the surface of the pure liquid is concave, the pressure below the surface is lower than
above the surface. This is why molecules from the vapor space, when managing to enter the
bulk of the liquid, are subject to a an acceleration that is stronger than it is in case of a flat
surface. It is as if there were a repulsive force on the molecules that acted from the interior the
vapor space in the direction of the interior of the liquid.

Because of this inverse analogy with a pressed liquid (and its uncompressed vapor), Le
Chatelier’s equations (68) and (69) can also be applied to a dilated liquid, i.e., to a liquid whose
pressure is lower (and whose temperature is higher) than that of the vapor in contact with it. We
then have (as an equation of state):

(70)

(Uliqdﬂmd B Uliqmﬁhm) + (pliq -p vapor)Vliq = Cv—liquiqAT lig + Vliqu =0

or:
(71)
4 1
dT = —— dp = —— d
e, P o P

ff) Though H. Le Chatelier played an important role in physical chemistry (the Chatelier-
principle was named after him), the importance of his Equation (67) or (68) has never been
recognized so far.

7) A late completion of Boltzmann's homage paid to Loschmidt; consequences
for the Second Law and for the nature of time

a) Loschmidt’s conception of the Second Law of Thermodynamics

aa) When Josef Loschmidt died in 1895, Boltzmann held a memorial speech addressed to the
Chemical-Physical Society of Vienna on the 29th of October, 1895. On this occasion, he rated
the computation of the number of molecules contained in a unit volume to be Loschmidt's
greatest discovery ' . Such a rating must be contradicted. A discovery at least equivalent to the
one mentioned by Boltzmann is the compatibility of the (re-formulated) second law of
thermodynamics and the perpetual motion machine of the second kind. If Loschmidt's discovery
of that compatibility had been widely accepted in those days, the evolution of energy technology
might have been a different one. Unfortunately, Loschmidt's arguments in favor of the
stratification of temperature in a gas subject to gravity do not provide a strict proof. With a strict
proof at hand, he could have spread his thesis with a greater psychological effect.

bb) Loschmidt surmised that the second law could be derived from the principle of least action.
To put it differently: he replaced the original foundation of the second law (that is the axiom of
the impossibility of a perpetual motion machine of the second kind) by a different one. Doing so
he referred to Boltzmann, who had already displayed such foundation in his article "Uber die
mechanische Bedeutung des 2. Hauptsatzes der Wirmetheorie" .
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It can be left undecided whether or not the derivation of the second law from the principle of
least action is strictly convincing. In a more recent article, G. Bierhalter, who has published
several articles on the history of the second law, doubted the strictness of such reasoning. '¥
This doubt is justified as soon as one realizes that the principle of least action can be derived
from the Euler-Lagrange equation (see L. Susskind/G. Hrabovsky, The Theoretical Minimum:
Classical Mechanics, 2013, pp. 111-114, where the Euler-Lagrange equation is derived from the
principle of least action by a reversible succession of steps), which, in turn, can be derived from
Newton’s principle of force and counterforce. Given the reversibility of motions brought about
by forces, one can hardly see how the Second Law could be derived from this principle.

cc) Loschmidt had the following vision for the future:

"Thereby the terroristic nimbus of the second law is destroyed, a nimbus which makes that
second law appear as the annihilating principle of all life in the universe, and at the same time
we are confronted with the comforting perspective that, as far as the conversion of heat into
work is concerned, mankind will not solely be dependent on the intervention of coal or of the
sun, but will have available an inexhaustable resource of convertible heat at all times." " .

b) The formulation of the Second Law, reconsidered

In any case, the second law and a perpetual motion machine of the second kind are compatible,
as soon as we no longer define the second law as it has been usual. Given the possibility of
running a perpetual motion machine of the second kind, the second law should rather be
formulated as follows (different from the modification of the Second Law suggested by
Loschmidt, the modification suggested in the following avoids an unnecessarily wide scope of
the Second Law):

“In an overwhelmingly large majority of all processes, entropy (of a closed system) increases or
stays fixed, whereas it decreases only in small number of processes.”

An equivalent formulation is the following:

“In an overwhelmingly large majority of processes, entropy (of any single, homogeneous
substance) is a variable of state, whereas it is not a variable of state in a small number of
processes.”

Another equivalent formulation is the following:

“In an overwhelmingly large majority of processes, the coarse-grained volume of a system of N
particles in phase space increases with time or stays fixed, whereas it decreases only in a small
number of processes.”

The last formulation is the most illustrative: As was shown above, the volume in phase space of
a number N of particles does NOT change with time, but stays fixed (Liouville’s theorem).
However, it may happen that the volume started as a (more-than-three-dimensional) compact
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sphere, and turned into a more complicated structure as time passed. The complicated structure
is made up of many filaments, so that with a limited “sharpness of vision”, the new structure
appears as if its volume in phase space had increased. This happens in the majority of all cases.
Nevertheless, in a minority of cases, a lump of an “incompressible liquid” in phase space may
start as a complex structure with many filaments, and may end up as a simple structure. In those
cases, the apparent volume of the structure has decreased. So has entropy.

¢) The Second Law and the Arrow of Time

aa) Why is it that one direction of development, that is from a simple structure in phase space to
a complex one, is more likely than the other? It has to do with the arrow of time. If both
directions had the same likelihood, there would be no direction if time in the universe. Since we
do observe a direction of time in the visible universe, one direction of time prevails over the
other.

But what is the reason for our universe to have a prevailing time direction? The fact that (most)
differences in density and temperature will vanish “after” a while (and do thereby constitute a
time direction) has to be ascribed to the original state of matter (in the visible universe), to
which our present state is causally linked. In that respect, there is a resemblance between
temperature nivellation and gravity: The fact that water in a cup, when stirred, will climb the
walls of the cup as a result of the centrifugal “force" at work, is -as General Relativity tells us-
a result of the special way the distant stellar masses of the universe are distributed. In much the
same way, the fact that cold water, when added to a cup containing hot coffee, will mix with the
coffee to form a liquid of uniform temperature, is a result of the state of matter in the universe
billions of years ago. Or as S.M. Caroll (“The Cosmic Origins of Time’s Arrow”, Scientific
American, June 2008, page 26) puts it:

“The universe started off orderly and has been getting increasingly disorderly ever since. The
asymmetry of time ... plays an unmistakable role in our everyday lives: it accounts for why we
cannot turn an omelet into an egg... And the origin of the asymmetry we experience can be
traced all the way back to the orderliness of the universe near the big bang. Every time you
break an egg, you are doing observational cosmology.”

The often discussed paradox, that is the question why temperature differences within an ideal
gas will always vanish though all motions of the molecules are reversible (so that increases in
temperature differences should be as frequent as reductions of these differences) is thereby
resolved: The “initial” state of the gas to start with (which itself is causally dependent on prior
states of things) isn't of the right kind for generating temperature differences.

bb) Moreover, this recognition gives rise to revisit Boltzmann's famous dispute with Zermelo.
In a universe endless both in time and in space, he argues, there must exist “islands" in which,
by random processes, matter is organized, whereas the universe is barren and at uniform
temperature elsewhere. Living beings (including intelligent machines) on such an island will
define the arrow of time by saying that the future is the less organized state, while the past is the
more organized state of their island (there is no physical definition of the arrow of time other
than this one, since the laws of physics are time-symmetric). Later on, this concept of time was
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consolidated by Hans Reichenbach (“The Direction of Time"), who stressed that in those
ordered states, the system is not free to find itself (as a result of random processes) in a much
different state soon after or slightly prior to the moment in time considered (when the system is
highly ordered), as laws of nature allow only slight changes within short periods of time.
Different from dice or roulette balls, every bulk of gas has a memory.

The universe is hence in possession of different states, but is lacking of an intrinsic ordering of
these states by the category earlier / later. Instead, such an ordering is ex trinsic. It seems that
Boltzmann's view of the arrow of time is quite correct despite the fact that cosmology, by
assuming the Big-Bang at the “origin" of the universe, may be dismissing the assumption of a
universe endless both in space and time. Different from Boltzmann’s view, though, an arrow of
time whose direction is opposite to ours is not a phenomen whose occurrence is restricted to
regions billions of light years away. Given the possibility of running a perpetual motion machine
of the second kind here on earth, that opposite arrow of time on the one hand, and our familiar
arrow of time on the other hand penetrate each other, with one arrow being the BIG arrow and
the other being the LITTLE arrow of time.

d) E. Mach and M. Planck on the Second Law

It is hardly known that Ernst Mach *?, too, was skeptical about the impossibility of a perpetual
motion machine of the second kind (should the molecular theory of matter be correct). was
restrictive as regards the reach of the Second Law. In his "Principles of the Theory of Heat" (Die
Principien der Wérmelehre, 2nd edition 1900, p. 364) he wrote:

"The mechanical view of the Second Law, which distinguishes ordered and disordered motions
by paralleling the increase in entropy with the increase in disordered motions at the expense of
ordered motions, appears to be quite artificial. Taking into account that a real analogue of
entropy increase does not exist in a purely mechanical system made up of perfectly elastic
atoms, one can hardly reject the idea that an infringement of the Second Law should be quite
possible -even without any help from demons- , given such a mechanical system is indeed the
basis of heat phenomena. I agree completely with F. Wald, when he says: ‘In my judgment

the root of this [entropy] principle lies much deeper, and if it is possible to

bring the molecular hypothesis and the entropy principle into harmony, then

it is lucky for the hypothesis but not for the entropy theorem.” "

M. Planck’s remarks on the Second Law are as follows (Treatise on Thermodynanics, Dover
Publ 1945, translated from the 7th German edition 1922, § 116, p. 89):

"We, therefore, put forward the following proposition as given directly by experience: It is
impossible to construct an engine which will work in a complete cycle, and produce no effect
except the raising of a weight and the cooling of a heat-reservoir."

But the validity of a law of nature cannot depend on the capability or incapability of mankind to
build certain machines. Planck agreed with this objection (though he then should better have
chosen a different formulation of the second law), as he wrote (op cit, § 136, pp. 105, 106):
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"In conclusion, we shall briefly discuss the question of possible limitations to the second law. If
there exist any such limitations -- a view held by many scientists and philosophers -- this much
may be asserted, that their existence presupposes an error in our starting point, viz the
impossibility of perpetual motion of the second kind, or a fault in our method of proof. From the
beginning we have recognized the legitimacy of the first of these objections, and it cannot be
removed by any line of argument. The second objection generally amounts to the following. The
impracticability of perpetual motion of the second kind is granted, yet its absolute impossibility
is contested, since our limited experimental appliances, supposing it were possible, would be
insuifficient for the realization of the ideal processes which the line of proof presupposes. This
position, however, proves untenable. It would be absurd to assume that the validity of the
second law depends in any way on the skill of the physicist or chemist in observing or
experimenting. ... the law asserts briefly that there exists a quantity which changes always in the
same sense in all natural processes. The proposition in this form may be correct or incorrect;
but whichever it may be, it will remain so, irrespective of whether thinking and measuring
beings exist on earth or not, and whether or not, assuming they do exist, they are able to
measure the details of physical or chemical processes ...."

But given Boltzmann's view on reversibility is correct, there is no such quantity (entropy) which
changes always in the same direction (increase); instead, it also changes in the opposite direction
(decrease) if one waits long enough. Hence, the Second Law in the form of "there exists a
quantity which changes always in the same sense in all natural processes" is not a true
description of nature if Boltzmann is correct. It seems that Planck himself realized this
objection, as he added a footnote to the first sentence of § 136 in which he stated:

"The following discussion, of course, deals with the meaning of the second law only in so far as
it can be surveyed from the points of view contained in this work avoiding all atomic
hypotheses." (The orginal German text is: "Die folgenden Betrachtungen erortern die
Bedeutung des zweiten Hauptsatzes selbstverstandlich nur so weit, als sie sich von dem in
diesem Werk eingehaltenen, alle atomistischen Hypothesen vermeidenden Standpunkte aus
iibersehen 1463t.")

This has an effect on Planck's initial formulation of the second law as well ("We, therefore, put
forward the following proposition as given directly by experience: It is impossible to construct
an engine which will work in a complete cycle, and produce no effect except the raising of a
weight and the cooling of a heat-reservoir."). Given it is only improbable but not impossible that
entropy decreases, nothing can be said on the improbability or probability of finding a way to
build a perpetual motion machine of the second kind, since Boltzmann's reflections on
probability do not apply to engineers, but only to gas particles.

e) The Second Law expressed in equations in which the parameters “entropy”
(of which there are two different variants S and S,,,) appear

aa) In textbooks, the following expression of the Second Law can be found:
(72)
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S is the entropy of a single, homogeneous substance of finite mass (not the entropy of a closed
system!), dQ,., is the heat added to the substance or taken from it during a reversible process. A
reversible process, in turn, is a process that can be conceived of as a succession of quasi-
equilibrium states.

By setting the numerical value of the loop-intgral of dS to zero, the textbook equation postulates
that entropy is a variable of state. As a consequence, it follows that any perpetual motion
machine of the second kind is impossible. This is because of the following: in order for such a
machine to work, there would have to exist cases in which entropy is not a variable of state, so
that the loop- integral is not always zero, but different from zero in some cases (dependent on
the path chosen).

But this textbook-equation is empirically wrong. It has to be replaced by the following set of
statements, which contain an altered formulation of the Second Law (with dS= dQ,,,/T — and
not Boltzmann’s equation S = k InW + C — being a definition of entropy):

(73)
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The sign := stands for a definition. S again denotes the entropy of a single substance (e.g., a
quantity of gas). C is a summand that may or may not be a constant. W is an expression of the
number of microstates each of which is a realization of a given macrostate of the substance. The
loop-integral of d[In W] is zero in any case (W is a variable of state, its value being independent
of the history of the current state to which W is ascribed). Any given macrostate with a given W
may be succeeded by a different macrostate with a different W, either by adding or removing
heat, or by an adiabatic process. In the latter case, with no interference from outside, we might
need to wait very long for such process to happen, but this is of no importance here. What
counts is Boltzmann’s presumtion of all microstates (of any macrostate) being equally likely to
materialize (under certain constraints). And this entails that reversible processes can either be
unadiabatic or adiabatic.

In other words: Given all microstates have the same change of realization (it would even suffice
to state that no microstate has a zero probability of realization), all transitions from a given
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microstate to a different microstate are reversible, no matter if the new microstate belongs to the
old macrostate or to a new one. Hence, strictly speaking, the subscript “rev” (for: “reversible”)
in the definition of entropy (dS= dQ,.,/T) is obsolete once Boltzmann’s statement on entropy
(expressed in his famous equation S = k InW + C) has been adopted.

To give an example, imagine that a closed path consists of two legs: On the first leg, the gas in
a container gathers in one corner of the container within several minutes or hours without any
interference from outside, thus constituting an adiabatic, reversible change of states that occurs
whenever you wait long enough for it to happen. Therefore the integral of dQ,,,/T along this leg
is zero. The second leg consists of a usual isothermal and thus reversible expansion of the gas
performed by means of a piston that is thereby giving off work while the gas is absorbing
thermal energy from the ambient. As a result of the closed loop, the entropy of the substance
(defined as dS = dQ,,,/T) is not unchanged, but has increased, although pressure, temperature
and density are the same as they were at the beginning of the cycle.

Conversely, let us imagine that the closed path consists, as a first leg, of a slow, adiabatic
expansion into the vacuum, which is performed in a way that the piston does not feel any
pressure. In order for that to happen, one would again have to wait for a very, very long time.
This unusual expansion shall be followed by a slow (but usual) isothermal compression which
leads back to the starting point. Then the loop-integral of dS=dQ,.,/T results in a decrease in
entropy of the substance. However, the same result is obtained if the adiabatic expansion (first
leg) is such that the piston moves out so fast that the molecules have hardly time to be reflected
by it (expansion of the gas into the vacuum). This leg shall again be followed by a slow (but
usual) isothermal compression which leads back to the starting point. Since the distinction
between a reversible and an irreversible change of state is obsolete (given any change of
microstate is a reversible one), this loop-integral of dS=dQ,,.,/T= dQ/T results in the same
decrease in the entropy of the work substance as did the previous one (although textbooks would
wrongly assert that the loop-integral of dS is zero in the latter case).

We thus realize: The summand C has to be adapted to the path that has been chosen, and is thus
not the same at any point along any path chosen (nor is the entropy S of the substance). Or:
Entropy S of the substance is not a variable of state.

No probability judgement can be made with regard to each of the three alternatives (“or”) in our
mathematical statement (73), if we do not leave the gas in the container to its own devices, but
are free in interfering with it by any means engineers could possibly invent. In other words:
Boltzmann’s probability reflections do not allow us to make judgements on how probable the
invention of a perpetual motion machine of the second kind might be.

bb) This leads to consequences for the entropy of a closed system:

If we have dQ,,,=dQ, the entropy of a closed system (work substance and the substance that
functions as a heat reservoir) can stay constant during all the processes considered. This is
because the amount of heat dQ absorbed or given off by the work substance at a temperature T

can be given off or absorbed by the heat reservoir at the same temperature T.

If such an outcome (of an invariance of entropy) is to be avoided, the definition of entropy S has
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to be expanded in the following way (the term S
is expanded, C

op then stands for the entropy whose definition
then is the summand in Boltzmann’s equation if his equation is that of the

exp

expanded entropy S,,,):
(74)
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To each substance that belongs to the closed system, a number k (ranging from 1 to n) is
ascribed. The parameter n denotes the total number of substances (each of homogeneous
temperature) in the closed system. The integrals are taken over a period of time from t=0 to t=t.

Now the entropy S,,, of a single substance is a variable of state by definition. That is to say:
Whenever the closed-loop integral of dS,,, should not be zero at first sight, it then follows as a
logical necessity that not all steps have been those that could be labelled “reversible”, that is, not
all have been manifestations of dQ,.,.
Even without Boltzmann’s statistical reasoning, the physical validity of the square bracket (that
contains a formulation of the Second Law of Thermodynamics that uses S, rather than S)
follows from the general theorem that all processes in nature are reversible in principle. In other
words: The temporal limits of the integral can be interchanged. Hence, if an increase in
expanded entropy of a closed system is possible, a decrease, too, must be possible.

Of course, when following Boltzmann’s reasoning, a decrease in entropy of an almost closed
system can only be observed from outside. Within the closed system, any observer whose body
is part of the closed system will define his or her ordering of “earlier-later”, that is, his or her
direction of time, in a way so that the entropy of the closed system (he or she is part of) is
increasing and not decreasing.

Thus the question raised in the title of this article can be answered in the positive.
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