
Proof a a stratification of temperature in a heavy column of gas by
Liouville’s theorem

1. Liouville’s theorem

Liouville’s theorem shall be elaborated. 

a) Let us define a parameter H (called Hamiltonian) in the  following way (U is the potential
energy of a particle, m its mass, p its momentum):
(1)

Partially differentiating H with respect to a single p , that is, with respect to the momentum
component in one direction of a single particle of mass m, gives:
(2)

Partially differentiating H with respect to a single x , that is, with respect to the spatial
position of a single particle, gives (F is force on a particle):
(3)

One should also note that, even if dH (the total differential of H) is exaxtly zero (which is the
case if the total energy of the system, kinetic and potential, stays fixed), partial delta H may
nevertheless be different from zero.

We shall now imagine that each of the many particles is moving in a six-dimensional phase
space. That is to say: Each particle has, at any moment in time, six coordinates, which are x,
y, z, px, py, pz. 

At a later moment in time, the single point that represents that particle in six-dimensional
phase space may have shifted. If there are many neighbouring points (in six-dimensional
phase space) which each represent a particle, we are confronted with what we may call a
“flow of stuff” in the six-dimensional phase space. We would like to find out whether or not
the number of points in a stationary (six-dimensional) volume element (of constant volume,
shape and position) stays constant over time.   

If, for a better illustration, we reduce the dimensions from six to merely two (this is for a
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short while only), that is x and px , we would get for dZ/dt, that is, for the increase or
decrease in the number Z of particles in the two-dimensional “volume” element over an
interval of time (A is a factor that is an expression of the particle density in phase space;
without any further knowledge, all parameters could depend on position in phase space and
on time):
(4)

The equation is based on the assumption that a large number of particles find themselves
within the volume element and nearby. Horizontal velocities vhoriz and vertical velocities vvertic

refer to velocities of particle points in the two-dimensional diagram in which the horizontal
axis stands for the direction x, and the vertical axis stands for the x-component of momentum
p. The subscript 1 refers to the location where particle-points enter the fixed volume element.
The subscript 2 refers to the location where particle points-leave the volume element. We 
assume that the changes in velocities from particle to particle at a frozen moment in time
apply to a great number of particles which behave the same way. 

b) When returning to six dimensions (instead of just two), we have:
(5)

When making use of (2) and (3), (5) turns into:
(6)

Or, after re-arranging the order of summands:
(7)
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Since the order of two partial differentiations can be reversed without affecting the result,
each of the three brackets in (7) is zero, and so is the whole sum. Given the number of
particle-points in a fixed six-dimensional volume element of phase space does not change
with time, A (which is an expression of particle density in phase space) does not depend on
time.  

c) With the density of particle-points in the fixed six-dimensional volume element of phase
space being constant over time (which is true as long as the moving lump of particle-points
has not left that volume element), the ensemble of particle-points in six-dimensional phase
space behaves like an incompressible liquid in real space that has a homogeneous density. 

Note that (7) is valid in the interior of a “lump” of particle points only, and is not applicable
right at the surface of the lump, where H is not differentiable. Also note that there may be
different “lumps” of particle points at the same time that have different homogenous densities
in phase space (similar to incompressible liquids in real space, which, too, come in different
densities).

2) Inhomogeneity of temperature in a gas subject to gravity

a) Imagine all N particles of a gas are evenly, that is, equidistantly arranged so that they form
a cube in real space with homogeneous density. The edges of the cube run parallel to the three
axes of a Cartesian system of coordinates. 

In six-dimensional phase space, the center of the cube shall coincide with the origin of
coordinates. Let us concentrate on just two dimensions of the six-dimensional phase space.
Let the spatial x-axis (one of three spatial directions) be the horizontal axis, and let the px-
momentum axis (one of three momentum components) be the vertical axis of the diagram. In
that partial phase space, the gas particles (in the initial moment) form a two-dimensional area.
Due to the arrangements put in place, the particle-point density (that is, the density of points
in phase space) shall be homogeneous throughout the whole six-dimensional volume, and
hence also throughout the two-dimensional area, no matter what distribution of momenta is
necessary to achieve such a state in phase space. 

For reason of symmetry, the situation must look alike when considering the partial, two-
dimensional phase space which consists of the spatial y-axis as the horizontal axis and the py-
axis as the vertical axis, or when considering the partial, two-dimensional phase space which
consists of the spatial z-axis as the horizontal axis and the pz-axis as the vertical axis.

b) Let us now imagine that the particles give in to the forces of mutual gravitational attraction
they are subject to. Let us wait for a while, until a stationary state of motion of the particles
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has been achieved. We know from Liouville’s theorem that the six-dimensional volume of
the lump of particle-points in phase space has not changed. We also know that the particle-
point density in each of the three partial, two-dimensional phase spaces (formed by x and px ,
or by y and py , or by z and pz), has not changed either. But it can be considered as an
empirical fact that, in the stationary, radially symmetrical state which has formed, the density
of the gas in real space (particles per spatial unit volume) decreases with distance from the
origin of coordinates. For our two-dimensional, partial phase space, this results in the
following: When sliding the edge of a ruler horizontally from far left to right over the surface
of the diagram, the number of particle-points passed per unit distance of horizontal
displacement of the edge of the ruler would not be constant, but would increase until we
reach the origin of coordinates. This property of the two-dimensional lump of particle-points
in phase space shall be called property number one.  

If assuming that the temperature of the gas is homogeneous regardless of distance from the
center of origin, the vertical extension (height) of our two-dimensional lump of particle-
points in two-dimensional phase space (that is, the range of momenta of particles) would have
to be the same everywhere. This property of the two-dimensional lump of particle-points in
phase space shall be called property number two. But with these two properties (of our two-
dimensional lump of particle points) combined, it is impossible for the lump of particle points
to have a homogeneous density in phase space. 

Moreover, in case Boltzmann’s distribution of kinetic energies held true for the gas of
assumed homogeneous temperature, the vertical extension of the lump of particle-points in
two-dimensional phase space would be infinite, and the average density of points in two-
dimensional phase space would consequently approach zero, quite different from the initial
state of the gas. But this is forbidden by Liouville’s theorem. Hence, in order to avoid
infinitely high values of variables, we shall assume that the gas is confined to the interior of a
hollow sphere with a finite radius. We also assume that the microstate of the gas we are
considering is of a kind in which particles do not occur that in Boltzmann’s distribution of
energies belong to the upper 0.01 percent. Then, in case of a homogeneous temperature of the
gas, the lump of particle-points in a partial, two-dimensional phase space would have to form
a rectangle with finite extensions, but with varying densities of particle-points from place to
place. But this, too, is forbidden by Liouville’s theorem. A homogeneous temperature of the
gas is thus excluded.

Last, not least: A volume element in the interior of a bulk of gas (whose particles attract each
other because of gravity) in real space does not know whether the center of the bulk consists
of other gas particles or of solid matter, instead. In other words: The impossibility of a
homogeneous temperature of a gas holds true also for an atmosphere of a planet.   

Thereby it is proved that a homogeneous temperature of a heavy gas cannot exist in real
space. Quod erat demonstrandum.

c) Only if we assume that the heavy gas is warmer at the bottom and colder in the upper
regions, there would no longer be a conflict with Liouville’s theorem: The height of our lump
of particle-points in two-dimensional phase space would then be larger near the origin of
coordinates (center of the sphere), and smaller at regions some horizontal distance away.
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Thereby a homogeneous density of particle-points in two-dimensional, partial phase space is
possible, as is required by Liouville’s theorem. 

A stratification of temperature in a heavy gas corresponds to a steady upward and downward
flow of parcels of gas, that is to a situation permanently out of static equilibrium, whereby the
adiabatic lapse rate of temperature with height is being approached.

d) Our result is equivalent to the recognition that the distribution of momenta and kinetic
energies among the particles cannot be that of Boltzmann. For if Boltzmann’s distribution of
energies were strictly valid everywhere, the temperature of the gas would have to be the at all
heights (see Alan J. Walton, Archimedes’ principle in gases, Contemporary Physics, Vol. 10
– 1969 –, p. 185; Claude Garrod, Statistical mechanics and thermodynamics, Oxford
University Press, 1995; and also K. Zhang / Y.-J. Zhang, Principle of detailed balance and a
dilute gas in gravitational field, arXiv:1607.06692v3 [cond-mat. stat-mech] 30 Nov 2016).
But it isn’t. In other words: The initial arrangement of particles cannot have converted into a
gas that strictly obeys Boltzmann’s rule of distribution of kinetic energies.   

3) The general physical law implicitly contained in Liouville’s theorem

But how can it be possible to derive the behaviour of a heavy gas from Liouville’s theorem?
In other words: What empirical physical laws are contained in it? 

At first sight, one might be inclined to believe that Liouville’s theorem does not contain any
empirical laws at all, but only definitions (which are contingent). But this first impression is
wrong. Equation (3) postulates:

It presupposes that the potential energy U of a particle is differentiable. Moreover, in order for
the particle to have a definitive potential energy, the gravitational field must be conservative
(any closed-loop integral of the vector g – gravitational acceleration – must vanish). The
“conservativeness” of the gravitational field can thus be identified as the empirical law
implicitly contained in Liouville’s theorem. 

Hence, the stratification of temperature in a heavy gas is derived from the empirically
corroborated “conservativeness” of the gravitational field, and Liouville’s theorem is merely
the vehicle for performing this derivation.

4) Confirmation of L. Susskind’s theorem of a permanent instability of a heavy gas

a) The above disproof of a homogeneous temperature of the heavy gas was inspired by L.
Susskind, who, in his online lectures on Statistical Mechanics, Spring 2009, Lecture 10,

https://www.youtube.com/watch?v=YeS_eRfKSpU
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0:54:30 h to 1:04 h, points out that a bulk of particles under its own gravity has “negative
specific heat“: When thermal energy is added, it expands against its own gravity, and does
mechanical work. Thereby it is getting cooler than it has been before. Conversely, when
thermal energy is removed, the bulk of particles contracts, and is getting warmer than it has
been before. This is because of the following theorem of mechanics: Whenever one has
removed an amount of kinetic energy W0 from an orbiter, it takes on a new (lower) orbit on
which the potential energy has decreased by exactly double that amount, that is by 2W0, and
on which its kinetic energy has gone up by that amount, that is by W0. 

A negative specific heat comes along with an unstable state.  This is because of the following:
When the energies of separate parts of the gas fluctuate (and are interchanged among those
parts), the fluctuation tends to build up. 

In Susskind’s words: 

“Gravity has all kinds of problems with thermodynamics, even just Newtonian gravity.
Newtonian gravity does not have a good thermal equilibrium. ... Gravity itself is a disastrous
thing when you are thinking about thermal equilibrium.” It “cannot correspond to a genuine
equilibrium situation. ... Systems with negative specific heats cannot be in equilibrium with
their environment. ... Thermodynamics breaks down eventually for systems with gravity.” 

b) As has been shown above, Susskind’s theorem is confirmed by an application of
Liouville’s theorem. Both in the proof based on Liouville’s theorem and in Susskind’s
theorem (of gas under gravity being out of equilibrium all the time), the only general physical
law applied is that of the “conservativeness” of gravity, and nothing else. 
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