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Abstract: It is shown that 100-year-old, conflicting ideas on the positive or negative energy of the 

gravity  field  collide  with  the  principle  of  local  conservation  of  energy.  A  scrutiny  of  the 

Schwarzschild metric, carried out with a different method than that applied by E. Schr€odinger but 

completed with a similar result, reconfirms that the gravity field holds no energy at all, with that 

recognition being tacitly acknowledged by Misner, Thorne, and Wheeler in 1973. Given that it 

does not hold any energy, it cannot, by definition, be qualified as a force-field. Given that it is not a 

force-field, it is capable of being completely transformed away even in the rigid reference-frame of 

a distant observer outside of the field. Contrary to what (early) Einstein believed, this can (and 

must) be achieved by the concept of “flowing spaces” that was introduced by elder Einstein himself 

in 1952. It is shown that this concept leads to empirical consequences. Moreover, the energy of the 

gravity field is necessarily replaced by an inexhaustible “dark energy,” which flows into any mas-

sive object (including Newton’s apple) whenever, after a free fall, it is being decelerated. Thereby 

Schr€odinger’s vision of “new foundations” of the energy conservation principle (as a consequence 

of his recognition that the gravity field holds no energy) is coming true. Because of the absence 

of  any  gravitational  field  lines  that  originate  from  that  energy,  the  (main)  seat  of  this  dark

energy  cannot  be  in  three-dimensional  space,  but  must  sit  at  a  location  separated  from 

ordinary  space  by  a  short  distance  in  a  direction  perpendicular  to  all  three  ordinary  spatial 

directions. VC  2019 Physics Essays Publication. [http://dx.doi.org/10.4006/0836-1398-32.4.484]

R�esum�e: On montre que des id�ees vieilles de 100 ans et contradictoires sur l’�energie positive ou

n�egative du champ de gravit�e entrent en conflit avec le principe de conservation locale de

l’�energie. Un examen de la m�etrique de Schwarzschild, effectu�e avec une m�ethode diff�erente de

celle appliqu�ee par E. Schr€odinger mais compl�et�e avec un r�esultat similaire, confirme que le champ

de gravit�e ne contient aucune �energie, cette reconnaissance �etant tacitement reconnue par Misner,

Thorne et Wheeler en 1973. �Etant donn�e qu’il ne contient aucune �energie, il ne peut, par d�efinition,

être qualifi�e de champ de force. �Etant donn�e qu’il ne s’agit pas d’un champ de force, il peut être

complètement transform�e même dans le cadre rigide de r�ef�erence d’un observateur �eloign�e en

dehors du champ. Contrairement �a ce qu’Einstein croyait (au d�ebut), cela peut (et doit) être r�ealis�e
par le concept d ’ “espaces fluides” qui a �et�e introduit par l’ancien Einstein lui-même en 1952. Il

est d�emontr�e que ce concept entrâıne des cons�equences empiriques. De plus, l’�energie du champ de

gravit�e est n�ecessairement remplac�ee par une in�epuisable “�energie sombre”, qui s’�ecoule dans

n’importe quel objet massif (y compris la pomme de Newton) chaque fois que, après une chute

libre, elle est d�ec�el�er�ee. Ainsi, la vision de Schr€odinger de “nouvelles bases” du principe de conser-

vation de l’�energie (en raison de sa reconnaissance que le champ de gravit�e ne d�etient pas

d’�energie) se r�ealise. En raison de l’absence de toute ligne de champ gravitationnel qui provient de

cette �energie, le siège (principal) de cette “�energie sombre” ne peut pas être dans l’espace tridimen-

sionnel, mais doit s’asseoir �a un endroit s�epar�e de l’espace ordinaire par une courte distance dans

une direction perpendiculaire aux trois directions spatiales ordinaires.
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I. INTRODUCTION

Force fields are characterized by their property of being

capable of transferring energy to a body they act on, at the

expense of energy previously stored in that field.

The electric field serves as a perfect example. An electrically

charged sphere that finds itself between the plates of a charged

parallel-plate-capacitor is accelerated by the field and is thereby

picking up kinetic energy. During this process, the Poynting-

vector field E�B shows a flow of energy from the field that sur-

rounds the sphere into that sphere. The sphere is a sink, and the

space around the sphere is a source of that energy flow.

Moreover, since the electric field between the capacitor

plates holds energy, it has mass.

Suppose we would find that, contrary to our assumption,

the electric field between the two capacitor plates would

have no (inert and heavy) mass. On the basis of the principle

a)Permanent address: Kappenberger Damm 27, 48151 M€unster, Germany;

andreas@andreastrupp.com

ISSN 0836-1398 (Print); 2371-2236 (Online)/2019/32(4)/484/13/$25.00 VC 2019 Physics Essays Publication484

PHYSICS ESSAYS 32, 4 (2019)

http://dx.doi.org/10.4006/0836-1398-32.4.484


of equivalence of mass and energy, we would have to come

to the conclusion that it holds no energy. Moreover, given it

holds no energy, it cannot be a force field. For in order to be

a force field, it would, by definition, have to be in possession

of energy. That energy is transferred to the sphere, where it

is converted into kinetic energy. Without any energy con-

tents, the electric field would be the field of a pseudo force,

and the kinetic energy of the sphere would have to be the

result of a tapping of a hidden energy reservoir

Let us now switch from the electric to the gravitational

field. Unfortunately, General Relativity does not provide a

tool analogous to the Poynting vector that would make the

flow of energy visible that enters Newton’s apple when it is

falling from the tree. Even worse, there is no consensus on

how the energy density of the gravitational field can be quan-

tified. An analogy with the electric field, according to which

the energy density would be proportional to the strength of

the local gravitational field (force per kg) squared, and would

thus have a positive numerical value, leads to an apparent

conflict with the principle of conservation of energy, and is

therefore dismissed by modern textbooks. Though some

authors postulate the energy density of the gravitational field

as being proportional to the negative square of the strength

of the gravitational field, this postulate was rejected by

Einstein for good reasons.

In this article, the energy density of the gravitational

field (if there is any) shall be determined once and for all.

II. METHODS

No other methods than logical and mathematical conclu-

sions are applied. The relativity principle, Einstein’s field

equation, the Schwarzschild solution of Einstein’s field equa-

tion, the equivalence of mass and energy (as postulated by

Special Relativity), the equation of a geodesic, and the local

principle of conservation of energy are used as starting-

points.

III. RESULTS

A. The quest for a determination of the energy density
of the gravity field

a) Einstein’s field equation of General Relativity,1,b) that is,

Rlv � 1

2
glvR ¼ 8pG Tlv (1)

presupposes the vanishing of the covariant divergence of the

“ordinary” energy-momentum tensor T that comprises

energy and momentum of ordinary matter M (but not of mat-

ter or momentum ascribed to a gravitational field). R denotes

the Ricci-Tensor, g denotes the metric tensor, and G denotes

Newton’s gravitational constant. The indices l and � run

from 0 to 3, and represent the four components (one is tem-

poral and three are spatial), that is x0, x1, x2, x3, of a four-

dimensional vector (of which there are four associated with

each 4� 4 tensor).

Proof: The covariant divergence of the left-hand side of

the equation is zero as a mathematical necessity. (A detailed

proof is omitted here.) Consequently, the covariant diver-

gence of the right-hand side of the equation, too, must

vanish.We thus get

0 ¼ rlTl� ¼ dlTl� þ Cl
alTa� þ C�

alTla: (1a)

The vanishing of the ordinary divergence of the energy-

momentum-tensor T [that is, the vanishing of the first sum-

mand on the right-hand side of Eq. 1(a)] seems to be an

expression of the principle of conservation of energy. In

order to visualize this, we choose a reference frame in which

no mass is changing its spatial position over time. Conse-

quently, the energy-momentum-tensor T has one single non-

zero component only (T00), that is, a component in the x0

(temporal)-direction. Given that the mass is spread out in

space, the energy-momentum tensor field (in that reference

frame) is a vector field whose direction is parallel to the

x0-axis, and whose magnitude is that of the local mass den-

sity. If that vector-field had an ordinary divergence different

from zero, the principle of conservation of energy (¼mass)

would seemingly be violated, as mass (¼energy) would

appear or disappear into nothingness. But what about the

energy and mass ascribed to the gravitational field? As A.

Einstein put it:c)

“It must be remembered that besides the energy

density of the matter there must also be given an

energy density of the gravitational field, so that

there can be no talk of principles of conservation

of energy and momentum alone.”

As a consequence, Einstein postulated the following

equation as an expression of the principle of conservation of

energy:2,d)

0 ¼ dTa
r

dxa
þ CrbTa

b ¼
dTa

r

dxa
þ 1

2

dglv

dxr
Tlv: (2)

Einstein’s Equation (2) is equivalent to the more familiar

Eq. (1a): Multiplication of both sides of Eq. (1) by the metric

tensor glk changes the components of the tensors from con-

travariant components to mixed components that can be

given different letters thereafter. Formulating the covariant

divergence of the new T—which must still vanish—leads to

Eq. (2). To recapitulate: Equation (2) is in accordance with

Eq. (1), as it states that the covariant divergence of T (not the

ordinary one) is zero, which is mathematically presupposed

by Eq. (1). The covariant divergence is distinguished from

the ordinary divergence by a summand that contains the

Christoffel symbol.

b)See its formulation by A. Einstein, The Meaning of Relativity, 5th ed.

(Princeton U.P., 1956), therein: “The general theory,” p. 84, Eq. (96).

c)The Meaning of Relativity, 5th ed. (Princeton U.P., 1956), therein: “The

general theory,” p. 83.
d)“The foundation of the general theory of relativity,” translated from “Die

Grundlage der allgemeinen Relativit€atstheorie,” Ann. Phys. 354, 769

(1916); in: A. Einstein, H. A. Lorentz, and H. Minkowski, The Principle of
Relativity (Dover Publ., 1952), § 18, Eqs. (57) and (57a), p. 151.
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One is getting a deeper understanding of Eq. (2) by

imagining a test body that, from the perspective of a far-

away observer, is “gathering speed” in a gravity field. In

such a case, T is of a kind that makes Eq. (2) an expression

of a geodesic along which the test body is coasting when left

to itself.3,e) If the gradient of the components of the metric

tensor g in Eq. (2) is not vanishing, the ordinary divergence

of T is different from zero. The nonvanishing, ordinary

divergence of T is compensated by the last summand on the

very right hand side of Eq. (2). In Einstein’s view, kinetic

energy of the falling body is thus converted into energy of

the gravitational field, or vice versa:f)

“Physically, the occurrence of the second term on

the left-hand side [this term of Einstein’s equals

the last term on the very right-hand side of our

Equation 2] shows that laws of conservation of

momentum and energy do not apply in the strict

sense for matter alone, or else that they apply only

when the g are constant, i.e. when the field intensi-

ties of gravitation vanish. This second term is an

expression for momentum, and for energy, as

transferred per unit of volume and time from the

gravitational field to matter.”

Since the second summand on the very right side of Eq.

(2) can be different from zero, it follows from Eq. (2) that

the ordinary divergence of T (first summand) may be differ-

ent from zero. This is why the tensor T cannot represent the

total energy-momentum density of the system, but only a

part of it. Otherwise the principle of conservation of energy

and momentum would be violated.

From Eq. (2), one can derive4,g)

0 ¼
d Tr

l þ trl
� �

dxr
: (3)

According to Einstein, t is an expression of the density

of “momenergy” ascribed to the gravitational field. Einstein

thus asserts that the ordinary divergence of T plus the ordi-

nary divergence of t amount to zero.

If a reference frame is chosen in which all components

of the metric tensor are constants over a small region of

space, and in which (by arrangement) the only nonvanishing

component of T inside a material body is T0
0 (mass at perma-

nent rest), the ordinary divergence of T is zero inside and

outside of the material body. (One has to keep in mind that a

tensor with mixed indices has absorbed the metric tensor,

hence the vanishing of the ordinary divergence of T is guar-

anteed only in case all components of the metric tensor are

constants.) Then, however, the ordinary divergence of t, too,

must be zero according to Eq. (3).

But does this allow the determination of the components

of t, especially of the magnitude of t00? The answer is in the

negative.

(b) After all, an integral which is founded on Eq. (3), that is

(here the fourth component is the timelike component)ð
V

T4
i þ t4

i

� �
dx1dx2dx3 ¼ const (4)

has (under certain restrictions) the same value in any refer-

ence frame.h) That is to say: The sum of all momenergies of

bodies and gravitational fields is not only constant over time,

but is also the same in any frame of reference. For comparison,

in Special Relativity, the momenergy of a body has the same

magnitude in any frame of reference, and is equal to the mass

of the body in its own rest frame. In General Relativity, it is the

sum of the momenergies of bodies and gravitational fields that

apparently replaces the momenergies of bodies alone.

Given the indeterminateness of the magnitude of the

components of t, it is no longer a surprise to find that the pos-

tulated energy-momentum density t of the gravitational field,

and also one of its components, that is the energy density of

the gravitational field t00 of the gravitational field, can be

made to vanish by means of an appropriate choice of “flat”

coordinates on the basis of Eq. (3).i)

Even more: One- and the same observer arrive at

completely different results for t and hence for the energy

density of the gravitational field, depending on which coordi-

nate system he or she is using.5,j)

In the face of this recognition, W. Pauli drew the

following conclusion:k)

“According to this, one cannot assign any physical

meaning to the values of the t themselves, i.e. it is

impossible to carry out a localization of energy and

momentum in a gravitational field in a generally

covariant and physically satisfactory way.”

Hence, no definite, time- and space-dependent value can

be attributed to the local energy density of the gravitational

field [at least not on the basis of Eq. (3)].

c) This stance of Einstein’s and Pauli’s presents a sharp

contrast to the long-standing and still popular assertion

according to which the energy density of the gravitational

field is proportional to the negative square of the local inten-

sity of the gravitational field. That assertion has been backed

e)W. Pauli, Theory of Relativity (Dover Publ., 1981), Sec. 54, p. 158.
f)See A. Einstein, op. cit, after Eq. (57).
g)See A. Einstein, “The foundation of the general theory of relativity,” § 17,

Eq. (56), p. 150; A. Einstein, “Der Energiesatz in der allgemeinen Rela-
tivit€atstheorie,” Sitzungsberichte der Preußischen Akademie der Wissen-

schaften 1, 448–459 (1918).

h)See W. Pauli, Theory of Relativity (Dover Publ., 1981), Sec. 61, Eq. (447),

p. 176; A. Einstein, “Der Energiesatz in der allgemeinen Rela-
tivit€atstheorie,” Sitzungsberichte der Preußischen Akademie der Wissen-

schaften 1, 448–459 (1918), Eq. (25).
i)See W. Pauli, Theory of Relativity (DoverPubl., 1981), Sec. 61, p.176:

“Since these quantities do not depend on the derivatives of the g higher than

the first, we can conclude immediately that they can be made to vanish at an

arbitrarily prescribed world point for a suitable choice of the coordinate sys-

tem (geodesic reference system).”
j)See H. Bauer, “€Uber die Energiekomponenten des Gravitationsfeldes,”

Physikalische Zeitschrift 19, 163–165 (1918): “As a concluding remark, we

may state that the ‘energy components’ t have nothing to do with the exis-

tence of a gravitational field, but depend on the choice of coordinates

only….”
k)W. Pauli, Theory of Relativity (Dover Publ., 1981), Sec. 61, p. 177.
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by the following argument: Since General Relativity can be

expected to be almost indistinguishable from Newton’s

physics when it comes to objects like the solar system, and

since Newtonian physics has been understood as equaling

the negative potential energy and the energy of the gravita-

tional field, one might be inclined to assume that the energy

density near gravitating masses has to be negative also in

General Relativity. See W. Pauli:l)

“In the earlier field theories of gravitation already,

it was the sign of the energy density of the

gravitational field which had led to difficulties. In

spite of these difficulties it would, on physical

grounds, be hard to abandon the requirement that

an analogue to the energy- and momentum-

integrals of Newtonian theory should exist.”

This led T. Levi-Civita and H. A. Lorentz to the belief

that the sum of positive energy of matter and (postulated)

negative energy of the gravitational field is always zero in a

closed system. Even today, this belief is very popular among

physicists.6,7,m)

Einstein rejected this assertion categorically,8,n) because

it would then be possible “for a material system to vanish

into nothing without leaving a trace.”

Moreover, those authors who postulate that the energy

density of the gravitational field is proportional to the nega-

tive square of its magnitude do not give any clue as to how

their postulate can be subject to empirical testing. Does a

negative sign of the gravitational energy density imply that

the mass that corresponds to this energy is negative, too? If

so, would we have to expect that the gravitational force

exerted by that mass on ordinary mass is repulsive?

d) Despite the impossibility of giving the energy density

and the momentum density of the gravity field a definite value

at a certain place and time, Eq. (4) is meaningful to Pauli and

Einstein, since that equation appears to make it possible too)

“calculate the change in the material energy of a closed system

in a simple fashion.” For Pauli and Einstein, the principle of

conservation of energy is observed in General Relativity by

means of Eq. (4). Einstein put it the following way:p)

“Contrary to our present thinking habits, we thus

arrive at attributing more reality value to an

integral than to its differentials.”

But such a reasoning can be convincing only in case the

principle of conservation of energy (and also the principle of

conservation of momentum) is not understood as a local
principle. Otherwise, that is, if one does understand the energy

principle as a local one (saying that energy can never simply

appear or disappear at some location, but can only flow into

that location or out of it), then the two equations (3) and (4)—

given that the local energy density is indeterminate in any

frame of reference—are not sufficient to guarantee the princi-

ple of energy conservation in General Relativity.

This insufficiency surfaces in an obvious manner in

Einstein’s short paper “Notiz zu E. Schr€odingers Arbeit ‘Die

Energiekomponenten des Gravitationsfeldes’”:9,q)

“There can well be gravitational fields without

tensions and without energy density.”

But when a test body is “gathering speed” in a gravita-

tional field that is supposed to be a force field, energy has to

flow into the test body from its immediate surroundings. This

is similar to the case of an electric charge set into accelerated

motion by an electric field, where the energy-flow (from the

adjacent electric field into the accelerating charge) is made

“visible” by the Poynting vector. Presuming (for a short while

at least) that no energy reservoir other than the gravitational

field is available, energy has to flow from the gravitational

field into the test body. Then, however, the gravitational field

(assumed to be a force field) cannot have zero energy density

at this location (contrary to Einstein’s view).

This recognition is commonly accepted.r)

To put it the other way around: If the gravity field is

void of energy, it cannot be a force field. Otherwise the prin-

ciple of local conservation of energy would be violated. It

even makes perfect sense to define a force field as a field

whose energy is transferred to an accelerated body. Hence, if

a field has no energy, it cannot be a force field by definition.

B. The absence of any heavy mass (and hence of any
energy density) of a gravitational field

a) If a gravity field were in possession of energy, it

would have to have heavy mass. As A. Einstein put it:s)

l)Theory of Relativity (Dover Publ., 1981), Sec. 61, p. 176.
m)See only Brian Greene, “The Hidden Reality, Parallel Universes and the

Deep Laws of the Cosmos” (2011), Note 9 to pages 65–70, Chap. 3 , p. 381:

“The gravitational field can supply the particles with such positive energy

because gravity can draw down its own energy reserve, which becomes arbi-

trarily negative in the process: the closer the particles approach each other,

the more negative the gravitational energy becomes (equivalently, the more

positive the energy you’d need to inject to overcome the force of gravity and

separate the particles once again). Gravity is thus like a bank that has a bot-

tomless credit line and so can lend endless amounts of money; the gravita-

tional field can supply endless amounts of energy because it sown energy

can become ever more negative. And that’s the energy source that inflation-

ary expansion taps.”; see also Alex Vilenkin, “Many Worlds in One—The

Search for Other Universes,” (2006), Part I 1, pp. 11/12: “So the energy of

the inflating chunk must also have grown by a collossalfactor, while energy

conservation requires that it should remain constant. The paradox disappears

if one remembers to include the contribution to the energy due to gravity. It

has long been known that gravitational energy is always negative. This fact

did not appear very important, but now it suddenly acquired a cosmic signifi-

cance. As the positive energy of matter grows, it is balanced by the growing

negative gravitational energy. The total energy remains constant, as

demanded by the conservation law.”
n)See his paper: “€Uber Gravitationswellen,” Sitzungsberichte der k€oniglich

preußischen Akademie der Wissenschaften (1918), Semi-Volume 1, pp.

154–167 [167].
o)See Pauli, Theory of Relativity (Dover Publ., 1981), Section 61, p. 177.

p)A. Einstein, “Der Energiesatz in der allgemeinen Relativit€atstheorie”, op.

cit., p. 452.
q)Physikalische Zeitschrift 19, 115/116 (1918).
r)As an example, see the entry “vacuum solutions” in the English Wikipedia:

“Since Tab ¼ 0 in a vacuum region, it might seem that according to general

relativity, vacuum regions must contain no energy. But the gravitational field

can do work, so we must expect the gravitational field itself to possess

energy,…”
s)“The foundation of the general theory of relativity,” translated from “Die

Grundlage der allgemeinen Relativit€atstheorie,” Ann. Phys. 354, 769 (1916),

in: A. Einstein, H. A. Lorentz, and H. Minkowski, The Principle of
Relativity (Dover Publ., 1952), § 16, p. 148.
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“For if we consider a complete system (e.g. the

solar system), the total mass of the system, and

therefore its total gravitating action as well, will

depend on the total energy of the system, and

therefore on the ponderable energy together with

the gravitational energy.”

One can, however, show that the gravity field does not

have any heavy mass (or any energy). The absence of any

energy of the gravity field follows from the Schwarzschild-

equation (as a solution of Einstein’s field equation for a non-

rotating, spherical mass and its surroundings). According to

the Schwarzschild-equation, the intensity of the gravitational

“force” is inversely proportional to the square of the distance

r (¼circumference of a circle, divided by 2p) from the cen-

tral spherical body, and directly proportional to its ordinary

mass M, exactly the same as in Newton’s law of gravitation.

Proof: The formula for a r-geodesic reads

d2R

ds2
þ C1

l�
dxl

ds
dx�

ds
¼ 0: (5)

Equation (5) simply says: The acceleration a body expe-

riencing is equal to the magnitude of the local curvature of

spacetime. While r denotes circumference of a circle around

the center of the spherical mass divided by 2p, the variable R
denotes a radial distance measured by laying meter sticks

end-to-end. Hence, dR denotes a short difference in radial

distance measured by a local observer who is at rest in the

gravity field. It is the second derivative of that R (and not of

r) with respect to the proper time s of a local, stationary

observer which describes the acceleration felt by this

observer.

The Christoffel symbol, that is,

Cp
l� ¼

gpn

2

dgnl

dx�
þ dgn�

dxl
� dgl�

dxn

� �
(6)

shall be written in full detail on the basis of the Schwarzs-

child metric, that is, on the basis of the metric tensor (G is

Newton’s constant, c is the speed of light, and M is the cen-

tral mass)

gl� ¼

1� 2GM

c2r
0 0 0

0 � c2 1� 2GM

c2r

� �� ��1

0 0

0 0 � r2

c2
0

0 0 0 � sin2h

:

(7)

GM can be replaced by rsc
2/2, with rs denoting the

Schwarzschild radius, that is the special distance from the

center of the spherical mass at which the escape velocity is c
(speed of light) in Newtonian physics. We then get (the

index 0 stands for the time t of a distant observer, the index 1

stands for r, the index 2 stands for the azimuthal angle h, and

the index 3 stands for the polar angle /)

C1
00

dx0

ds
dx0

ds
¼
�

g10

2
…ð Þ þ

g11

2

dg10

…
þ dg10

…
� dg00

dx1

� �

þ g12

2
…ð Þ þ

g13

2
…ð Þ
�

dx0

ds
dx0

ds

¼ c2

2
1� rs

r

� �
d 1� rs=rð Þ

dr

dt2

ds2

¼ 1� rs

r

� �
c2rs

2r2

dt2

ds2
(7a)

and

C1
11

dx1

ds
dx1

ds
¼ g10

2
…ð Þ þ

g11

2

dg11

dx1
þ dg11

dx1
� dg11

dx1

� ��

þ g12

2
…ð Þ þ

g13

2
…ð Þ
�

dx1

ds
dx1

ds

¼ � c2

2
1� rs

r

� � d � 1

1� rs=r

� �
c2dr

2
64

3
75 dr2

ds2

¼ � c2

2
1� rs

r

� �
1

c2 1� rs=rð Þ2
rs

r2

" #
dr2

ds2

¼ � rs

2 1� rs=rð Þr2

� �
dr2

ds2
: (7b)

All other products of Christoffel-symbols (denoted by C)

and their appropriate dx/ds times dx/ds vanish (given d//ds
and dh/ds are both zero).

We then get from Eqs. (5)–(7a) and (7b)

d2R

ds2
þ 1� rs=rð Þ c

2rs

2r2

dt2

ds2

þ rs

2 1� rs=rð Þ2r3

dr2

ds2
� rs

2 1� rs=rð Þr2

dr2

ds2
¼ 0: (7c)

After multiplication by ds2/dt2, 1/r, and 1/(1�rs/r),

Eq. (7c) turns into

d2R

ds2

ds2

dt2

1

r 1� rs=rð Þ ¼ �
c2rs

2r3
þ rs

2 1� rs=rð Þ2r3

dr2

dt2
: (8)

Since, according to the Schwarzschild metric, ds2/dt2

times (1�rs/r)�1 equals unity if s is the time of a (at least

momentarily) stationary observer in the gravity field, and

since dr/dt is zero with respect to a (at least momentarily)

stationary object, we get for this situation from Eq. (8):

d2R

ds2
¼ � c2rs

2r2
¼ �MG

r2
(9)

or

d2R

dt2
¼ � c2rs

2r2
1� rs

r

� �
¼ �MG

r2
1� rs

r

� �
: (10)
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Equation (10) is identical with the result obtained by

Droste in 1917.10,t) M is the ordinary mass of the spherical

body and G is Newton’s gravitational constant.

In order to make sure that the choice of d2R (rather than

d2r) in Eq. (5) and hence in Eqs. (9) and (10) is justified, let

us reconsider Eq. (8):

d2R

ds2

ds2

dt2

1

r 1� rs=rð Þ ¼ �
c2rs

2r3
þ rs

2 1� rs=rð Þ2r3

dr2

dt2
:

(10a)

This equation can be rearranged in order to present itself

as follows, given that s is the time of an observer at rest in

the gravity field, dr/dt is the velocity of an object in free fall

in the frame of an observer outside the gravity field, v0 is the

velocity of that object in the frame of the second observer

who is at rest in the gravity field, and who is watching the

object passing by:

d2R

ds2
¼ � c2rs

2r2
þ rs

2 1� rs=rð Þ2r2

dr2

dt2

" #
1� rs

r

� �
dt2

ds2

¼ � c2rs

2r2
þ v0ð Þ2rs

2r2

" #
: (10b)

(1�rs/r)�2 dr2/dt2 is equal to (v0)2 (radial velocities are

affected both by the contraction of meter sticks and by the

dilation of time), and (1�rs/r) dt2/ds2 is equal to unity.

According to Eq. (10b), an object whose radial velocity

is c does not experience any more radial acceleration. Conse-

quently, radial velocities that are below c in the beginning

cannot exceed the local speed of light outside of the

Schwarzschild radius. Moreover, Eq. (10b) shows that even

far away from the gravitating mass, that is at a large—though

not infinite—distance r from the mass, an object cannot be in

possession of a velocity greater than c to start with: If the

velocity v0 of an object at a large distance r were greater than

c, the acceleration d2R/ds2 would be positive, meaning that

the object would be decelerating (though only slightly if v0 is

not much greater than c) because of a reversal of the gravita-

tional force. But this could not be a physically valid state-

ment. Instead, one has to conclude that velocities greater

than c are physically impossible even in almost flat space-

time, that is, in Special Relativity.

The fact that, according to Eq. (10b), d2R/ds2 is always

negative or zero has a further consequence: Imagine we

would have written d2r/ds2 instead of d2R/ds2 in Eq. (5) and

hence in Eq. (10b). Then Eq. (10b) would require that d2r/
ds2¼(1�rs/r)�1d2r/dt2 has to be always negative (given

v02< c2). But since a freely falling object, when watched from

outside of the gravity field, is gathering speed only to start

with, and is slowing down near the Schwarzschild radius,

d2r/dt2 cannot always be negative [whereas (1�rs/r)�1 is

always positive]. Instead, d2r/dt2 has to change sign from

negative to positive somewhere between the starting point of

the free fall and the Schwarzschild radius. In order to avoid

this inconsistency, d2R, and not d2r, had to be used in Eq. (5)

and in Eq. (10c).

Back to the correct equation (9). For a momentarily

stationary observer in the gravity field, the gravitational

acceleration d2R/ds2, that is, the gravitational force per unit

mass of a test body, is, according to Eq. (9), directly propor-

tional to the mass M of the gravitating body (and does not

differ from the acceleration yielded by Newton’s law of

gravitation). For if one doubles the ordinary density and

hence the ordinary mass of the gravitating body, one doubles

the gravitational force.

If a heavy mass of the gravitational field appeared in the

Schwarzschild-equation in a hidden manner and thus co-

determined the intensity of the gravitational force, and if one

regarded the energy of the gravity field as being proportional

to the positive or negative square of the intensity of the grav-

ity field, a direct proportionality between the ordinary mass

M and the gravitational force [as given in Eq. (9)] would be

unexplainable because of that quadratic relationship.

On top of this, Eq. (9) proves that the local gravitational

force, that is the force felt by a stationary observer in the

field, is the same function of r as it is according to Newton’s

law of gravitation. Then the density of gravitational field

lines, too, is the same expression of the local gravitational

force as it is according to Newton’s law of gravitation. Con-

sequently, the gravitational field lines are divergenceless

(outside of the gravitating, spherical mass) according to

Eq. (9). This, too, shows: The gravity field that exists in

empty space does not exhibit a heavy mass. Even more:

There is no additional mass (¼energy) at all—that would sit

inside or outside of the central body—besides the ordinary

gravitating mass.

Note that the absence of any mass or energy of the gravi-

tational field occurs despite the fact that the components of

the metric tensor g shown in Eq. (7) are not all zero or unity.

From this follows (recapitulated): According to the

Schwarzschild-equation and hence according to General

Relativity, heavy mass only exists in the form of ordinary

mass M, not in the form of mass of the gravitational field.

Hence, according to Special Relativity and its principle of

equivalence of mass and energy, the gravitational field can-

not have any energy.

Such a result is tacitly—though not explicitly—acknowl-

edged by C. W. Misner, K. S. Thorne, and J. A. Wheeler in

their famous standard textbook on gravitation:11,u)

“Not one of these properties does ‘local

gravitational energy-momentum’ possess. There is

no unique formula for it, but a multitude of quite

distinct formulas. The two cited are only two

among an infinity. Moreover, ‘local gravitational

energy-momentum’ has no weight. It does not

curve space. It does not serve as a source term on

the right hand side of Einstein’s field equations.”

t)J. Droste, “The field of a single center in Einstein’s theory of gravitation

and the motion of a particle in that field,” Proceedings of the Royal Nether-

lands Academy of Science 19 I, 197–215 (1917), especially page 203.

u)Gravitation, 1973, Chapter 20.4: Why the energy of the gravitational field

cannot be localized, p. 467.
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In order to realize why the gravitational field does not

curve space, consider a location outside an ordinary mass

(that is, in vacuum), so that T is zero. If Eq. (1) is multiplied

by the metric tensor, we get

0 ¼ glv Rlv � 1

2
glvR

� �
¼ R� 2R ¼ �R: (10c)

With the Ricci-scalar R and the energy-momentum ten-

sor T being zero, the Ricci-tensor, too, has to be zero

according to Eq. (1). This is true for any metric, and even

applies to places in a very strong gravitational field or in a

gravitational wave.

With the local gravitational energy-momentum having

no weight, and given the equivalence of heavy mass and

energy, the gravitational field has no energy.

b) This recognition was anticipated by E. Schr€odinger.12,v)

Schr€odinger combined Eq. (3) and the Schwarzschild-solution.

He thereby achieved the following result:w)

“As mentioned above in an anticipating manner, it

follows … that t vanishes everywhere (outside of

the gravitating sphere) identically in all four

coordinates within the chosen frame of reference.

3. This result appears to me under all

circumstances of massive importance for our idea

of the physical nature of the gravitational field. For

we either have to dispense with qualifying t –

defined by (2) – as energy components of the

gravitational field; thereby, however, the

importance of the ‘conservation principles’ (see A.

Einstein I.c) would collapse, and the task would

arise to secure this integral part of the foundations

in a new way. – If, instead, we hold on to the terms

(2), then our calculation teaches us that real

gravity fields do exist (i.e., fields that cannot be

‘transformed away’), with vanishing energy

components, or, more precisely, energy

components that can be ‘transformed away’; …”

The latter of the two alternatives has to be dismissed: If

there were true gravity fields, that is, gravity fields that can-

not be “transformed away,” these fields would, as true force-

fields, have to have energy, that is, energy with components

that cannot be transformed away, and would, because of the

equivalence of mass and energy, have to act as a source of

gravitational field lines. But the Schwarzschild solution tells

us that it is only the ordinary mass and energy M that acts as

a source of gravitational field lines.

C. The total absence of a true gravitational force and
the indispensability of the idea of flowing spaces in
General Relativity

a) Hence, the term t in Eq. (3) does not stand for the

energy components of the gravitational field. Given that

the gravitational field has no energy, there is only one

explanation for the fact that an object in free fall is nevertheless

gathering speed: All gravitational fields can, without excep-

tion, be transformed away by the recognition that there are

space volume elements in the vicinity of a gravitating mass

that are permanently emerging and flowing toward the center

of the gravitating mass. A second possibility, namely, the exis-

tence of some unknown dark force that is acting on the falling

object, can be dismissed for the following reason: If such a

force existed, a freely falling electric point charge would, in

the rest frame of that charge, have an electric field whose shape

is not spherically symmetrical. But this would, as will be

shown below, contradict the relativity principle.

More precisely: According to the correct interpretation

of the solution of Einstein’s field equation for spherical

masses found by Schwarzschild (and by Droste only a short

time thereafter), namely, (s stands for the proper time of an

observer who is sitting in the gravity field, t denotes the time

of an observer who is at rest far away from the gravitating

mass, G is Newton’s gravitational constant, c is the speed of

light, r denotes the “distance” between an observer and the

center of the spherical, gravitating mass, with this distance r
being circumference of a circle, divided by 2p; h and / are

angles in the system of polar coordinates that are used)

ds2 ¼ glvdxldxv

¼ 1� 2GM

c2r

� �
dt2 � 1

c2 1� 2GM

c2r

� � dr2

� r2

c2
dh2 þ sin2h du2
� �

; (11)

there is no gravitational force. Instead, new space volume

elements are steadily popping up in space out of nothing, so

that space is permanently flowing toward the surface of the

spherical mass, in order to disappear somewhere in its inte-

rior. The velocity of a volume element of space is increasing

while the volume element is approaching the surface of the

spherical mass. Objects floating in space take part in that

accelerated flow.

Thereby all gravitational force fields are capable of

being transformed away (without the introduction of flowing

or streaming space, spherically symmetrical gravitational

forces can undoubtedly be transformed away only locally,

but not ubiquitously).

b) An illustration of the flow of space volume is pro-

vided by a modification of the Schwarzschild-metric,

namely, by replacing 2MG/c2r with H2R2/c2, so that the met-

ric can be applied to an expanding de-Sitter-universe charac-

terized by a Hubble-constant H (¼escape velocity, divided

by distance) which is constant both in space and in time. The

replacement is achieved by setting all components of the

tensor T appearing in Einstein’s field equation equal to zero,

and by setting Einstein’s additional term that appears on its

left side, that is the summand that contains the cosmological

constant k as a coefficient, no longer equal to zero, but by

giving k a positive numerical value (which is proportional to

H2).

v)“Die Energiekomponenten des Gravitationsfeldes,” Physikalische Zeit-

schrift 19, 4–7 (1918).
w)Op. cit., pp. 6/7.
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Then we get (s is the proper time of a second observer

far away from Earth and the Milky Way, t is the time of a

first observer who sits on Earth, R is the distance between

the two observers, measured as circumference of a circle

around Earth, divided by 2p)

ds2 ¼ 1� H2R2

c2

� �
dt2 � 1

c2 1� H2R2

c2

� 	 dR2

� R2

c2
dh2 þ sin2h du2
� �

: (12)

All points in space whose distance from the first

observer is not too close are escaping toward the cosmic

event horizon on straight lines. No force is exerted on

objects, for instance, on galaxies, that sit at those points in

space. Instead, the accelerated motion is brought about by a

steady expansion of space, that is, by a permanent popping

up of space volume elements between the galaxies.13,x)

With regard to the gravitational field of a spherical mass,

the situation is just alike. Different from the expanding uni-

verse, though, the emerging space volume elements do not

drift toward the cosmic event horizon, but to the surface of

the spherical mass (or, if the spherical mass constitutes a

Black Hole, to the Schwarzschild-horizon),14,y) in order to

disappear into nothingness in the interior of the spherical

mass.

Note that according to the Schwarzschild-equation, sta-

tionary, radially oriented meter sticks and stationary clocks

in gravity fields behave exactly like meter sticks and clocks

in Special Relativity do in case they are moving (along

straight lines) at a velocity that is equal in amount to the

escape velocity at the considered location in the gravity field.

The straight and unaccelerated motion of Special Relativity

is, in General Relativity, substituted by the permanent

motion of objects—that sit at constant distance r from the

center of mass—relative to the flow of space which is pass-

ing by (at a velocity that depends on radial distance r).

c) According to the famous interpretation of Einstein’s

field equation by J. A. Wheeler, masses in space tell space

how to curve, and the curvature of space tells masses how to

move. In order to realize this immediately, one should return

to Eq. (2). This equation describes a geodesic, that is, the

path taken by a body in space that is left to itself. In case

space is curved, the partial derivatives of the components of

the metric tensor g are not all zero. As a consequence, the

first summand in Eq. (2), namely, the ordinary divergence

ofthe energy-momentum tensor T, is different from zero.

This means that, according to Eq. (2), the coasting body

absorbs or gives off kinetic energy and momentum. As has

just been stated, this is solely due to the fact that the deriva-

tions of the components of g in Eq. (2) are not all zero. It is

for this reason that gravity is said to be nothing but curvature

of space. No curvature of space (that is, all spatial deriva-

tives of the components of g being zero), no acceleration.

But in this mathematical view of gravity, not a single word is

being said as to whether space inthe gravitational field is

moving or is at rest, instead. However, the arguments dis-

played above compel us to accept that the curvature of space

can result in accelerated motions of masses only if volumes

of space move in the reference frame of a distant observer.

That is to say: Not only in Special Relativity, but also in

General Relativity the contraction of meter sticks and the

slowing down of clocks is nothing but the result of their

motions in space. As regards General Relativity, Einstein

elaborated this recognition with respect to a rotating disc.

The Schwarzschild metric, according to which stationary,

radially oriented meter sticks and stationary clocks in gravity

fields behave exactly like meter sticks and clocks in Special

Relativity do in case they are moving (along straight lines) at

a velocity that is equal in amount to the escape velocity at

the considered location in the gravity field, proves that this is

also true for the vicinity of a spherical, gravitating mass.

Here, the clocks and meter sticks do not move relative to a

distant observer who sits outside of the gravity field, but rela-

tive to adjacent space that is passing by the clocks and meter

sticks.

D. Empirical consequences of space that flows or
streams

a) By the flow of space volumes, the gravitational force

is completely and ubiquitously transformed away in the rigid

reference frame of a far-away observer. One should stress

the fact that it is not the curvature of space, that is, the non-

zeroness of the second derivative of the metric tensor with

respect to coordinates, which is ubiquitously transformed

away in the reference frame of a distant observer (recall that

the curvature as expressed by the Ricci-tensor is zero in vac-

uum in any frame of reference, and thus cannot be trans-

formed away for logical reasons), but the gravitational force:

What had been regarded as the result of an accelerating force

on a massive object in Newtonian physics is now seen as the

effect of an accelerated motion of the space volume that sur-

rounds the object. Relative to that space volume, the object

is not accelerated, and is hence not subject to a force. Eventi-

dal forces felt by a radially falling body, which turn up if the

size of the falling body is not small enough, and which have

always been considered as being an obstruction to the total

replacement of gravitational forces by an acceleration of the

body’s rest frame, are transformed away: These forces must

now be seen as the result of the emergence of additional

space volumes in the interior of the falling body.

The complete absence of any gravitational force is made

evident especially when looking at electric charge that is

falling in a gravity field. No electromagnetic radiation is gen-

erated. For a co-falling observer, the electrostatic field of a

point charge stays spherically symmetrical.

Otherwise the famous observer in a freely falling eleva-

tor cabin could, contrary to the relativity principle according

to which the co-falling observer in the elevator cabin may

consider himself as being in the center of a local inertial

x)See A. Einstein, Relativity – The Special and the General Theory (Bonanza

Books, 1961), Appendix IV, p. 134: “Namely, the original field equations

admit a solution in which the ‘world radius’ depends on time (expanding

space).”
y)See H. Reichenbach, The Philosophy of Space and Time (Dover Publ.,

1958), § 36, Fig. 41, p. 226.
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system and hence at rest, tell by means of a simple observa-

tion, namely by determining the shape of the electrostatic

field of a charge at rest, whether he is falling in a gravity

field, or whether he is far away from heavy masses,

instead.15,z) If, as is required by the relativity principle, the

electrostatic field stays spherically symmetrical for a co-

falling observer, electromagnetic radiation is neither gener-

ated in the rest frame of the falling observer, nor in the rest

frame of a far-away observer who is stationary with respect

to the gravitating mass.

The undistorted spherically symmetrical shape of the

electric field of the falling point charge can be subject to

empirical testing. Since that shape of the electric field is

required by the relativity principle, it is implicitly contained

in Einstein’s field equation (that is based on the relativity

principle and on the invariance of the local speed of light).

That is to say: If the electric field were distorted, the theory

of General Relativity would be disproved.

b) In comparison, things are very different when an elec-

tric charge is “falling” in an external electric field (in the

absence of gravity), i.e., if the charge is accelerated by the

electric field between two capacitor plates. Then electro-

magnetic radiation is generated which is felt by a far-away

observer, and for the co-falling observer the shape of the

electrostatic field of the charge is distorted and no longer

spherically symmetrical.16,aa)

This difference between the two scenarios provides justi-

fication for claiming that it is not only the charge, but also

the surrounding space volume itself that, in case of a spheri-

cal symmetry of the electrostatic field of a charge falling in a

gravity field, is in accelerated motion in the reference frame

of a distant observer.

c) It was Einstein himself who, a few years prior to his

death, mentioned the possibility of moving space volumes:bb)

“When a smaller box is situated, relatively at rest,

inside the hollow space of a larger box S, then the

hollow space of s is a part of the hollow space of

S, and the same ‘space’, which contains both of

them, belongs to each of the boxes. When s is in

motion with respect to S, however, the concept is

less simple. One is then inclined to think that s

encloses always the same space, but a variable part

of the space S. It then becomes necessary to

apportion to each box its particular space, not

thought of as bounded, and to assume that these

two spaces are in motion with respect to each

other.

Before one has become aware of this

complication, space appears as an unbounded

medium or container in which material objects

swim around. But it must now be remembered that

that there is an infinite number of spaces, which are

in motion with respect to each other. The concept

of space as something existing objectively and

independent of things belongs to pre- scientific

thought, but not so the idea of the existence of an

infinite number of spaces in motion relatively to

each other. This latter idea is indeed logically

unavoidable, but is far from having played a

considerable role even in scientific thought.”

The importance of this Appendix has recently been

stressed by C. Rovelli.17,cc)

E. Gravitational waves as an affirmation of the
recognition that gravitational fields hold no energy

a) The existence of gravitational waves can be derived in

two different ways. The first (and common) one is the fol-

lowing: The spherical gravitating mass shall no longer be at

rest, but shall be in oscillating, accelerated motion. As a

slight modification of the constellation that forms the basis

of the Schwarzschild solution, not only the T00-component,

but also other components of T are supposed to be different

from zero (though only slightly). As a consequence, the

Schwarzschild metric, which, in the limit of large r, converts

into the Minkowski metric of flat spacetime, is no longer

exactly correct. Instead, the new metric tensor has compo-

nents which differ from those of the Minkowski metric by

small amounts. As a next step, one can show (by an approxi-

mation) that these deviations from the Minkowski metric are

wavelike.

A second (and much easier) way to prove the existence

of gravitational waves is the following: Eq. (9), in which

gravitational acceleration is a function of r, presents itself as

a perfect analogy to Coulomb’s law of the electrostatic field.

Consequently, E. M. Purcell’sdd) derivation of an electric

wave generated by an electric charge that starts or stops,

which does not need a magnetic field but is getting by on the

assumption (postulated by Special Relativity) that any

change in the electric field propagates with velocity c, is

valid also for a gravitational wave, provided one acknowl-

edges that any change in the gravitational field, too, propa-

gates with velocity c.

Purcell’s derivation goes like this: He imagines an

electric point charge that had been sitting at the origin of Car-

tesian coordinates for a long time. Eventually, at time zero,

the charge accelerates abruptly over an infinitesimal short dis-

tance in the positive x-direction, and travels at constant veloc-

ity v along the positive x-axis thereafter. Purcell then draws a

diagram that represents the situation at t¼ 2 units, when, for

instance, two seconds have elapsed. Given that any change in

the field propagates at velocity c but not faster, two regions in

z)For an illustration of the relativity principle as applied to a space ship

coasting in free space—as another example of an inertial system—see R. P.

Feynman, Lectures on Physics, Vol. 1, 1963, Chapter 15-4, page15-6: “The

biologists and medical men sometimes say it is not quite certain that the

time it takes for a cancer to develop will be longer in a spaceship, but from

the viewpoint of a modern physicist it is nearly certain; otherwise one could

use the rate of cancer development to determine the speed of the ship!”
aa)For a picture of the electric field lines of a formerly stationary point

charge that has been accelerated, see E. M. Purcell, Electricity and Magne-
tism, 2nd ed. (1985), Chapter 5.7, Fig. 5.17, p. 189.
bb)A. Einstein, Relativity – The Special and the General Theory (Bonanza

Books, 1961), Appendix V—supplemented in 1952 by Einstein—pp. 138

and 139.

cc)The Order of Time, 2017, p. 67, footnote.
dd)Electricity and Magnetism, 2nd ed. (McGraw-Hill Book Company, 1985),

Chapter 5.7, pp. 187–191, and Appendix B, pp. 459–463.

492 Physics Essays 32, 4 (2019)



the diagram have to be distinguished from each other: The

first region is the one beyond a circle with a radius of two light

seconds, drawn around the origin of coordinates. In this

region, the electric field must still be exactly as it had been

prior to t¼ 0; this is because the information that the charge is

no longer at rest cannot have reached this region yet. The sec-

ond region is the region within the circle. Here the “news”

that the charge is in motion has reached every point of the

region. In other words: The electric field in that region is the

same as it would be at t¼ 2 (not: at t¼ 0) in case the charge

had been travelling at constant velocity v for a long time

already, However, this appears to result in the generation of

loose ends of the field lines at the arc of the circle.

In the next step of Purcell’s derivation of an electric wave,

Gauss’s law plays a crucial role: Since, due to the absence of

any charge outside of the field-generating point charge, the

electric field lines in the two regions cannot, according to

Gauss’s law, display any disruptions or gaps, there must be

connections between them along the arc of the circle.

Moreover, since two field lines cannot intersect or coin-

cide, the emerged field lines along the arc of the circle must

be densely packed. It is in this region along the arc of the

circle where the density of the electric field lines is much

stronger than elsewhere.

Thereby a transversal electric wave has come into exis-

tence. But, to put it conversely: Without the zero divergence

of the electric field in that special region as required by

Gauss’s law, there would be no electric wave.

The same is true for a gravitational wave that obeys

analogous laws. Gauss’s law—as a consequence of which

the divergence of the electric field in vacuum is vanishing—

is replaced by the recognition that there is a zero-divergence

of the gravitational field in places where the Ricci tensor is

zero, that is, in vacuum. Thereby the existence of a gravita-

tional wavefront—with the gravitational field lines in that

front oriented at right angle to the direction of propagation

of the wavefront—is accounted for.

Given the divergence of the gravitational field is zero in

the region of the gravitational wave, the gravitational field

lines that constitute the wave front cannot be linked to any

mass, and hence cannot be linked to any energy.

On top of this, the described phenomenon of a flow of

space is thus made evident. This is because it is not the paral-

lel gravitational field lines of the wave front that can be mea-

sured by instruments, but the deformation of space that goes

along with the propagation of these field lines: Though the

Ricci tensor is zero in the region of the wave, the Riemann

tensor is not. This results in a temporary increase in distance

between two fixed points in one direction (that direction

being perpendicular to the direction of propagation of the

wave), and, at the same time, to a temporary decrease in dis-

tance between two fixed points in a second direction (that,

too, is perpendicular to the direction of propagation of the

wave). But this is just another way of saying that elements of

space volume are in motion. Note that these forces do not act

in the direction of the gravitational field lines, and cannot,

for this reason already, be true gravitational forces. Since a

spring that connects said points would be subject to tension

or to compression, it is made obvious that this motion of

space is an accelerated one. The tidal-like forces that are

observed when a gravitational wave hits matter are thus

transformed away.

b) In case the wave is doing work on bodies, it is the hid-

den reservoir of energy that is tapped, and not the energy of

the gravitational wave (which is zero). The common opinion

on the energy of gravitational waves is contradictory in the

following respect: If the energy density of the gravitational

field is numerically negative (as is asserted by most authors),

the energy contents of a volume of flat space will decrease—

and not increase—when a gravitational wave is passing by.

In order to save the principle of conservation of energy under

the presumption that there is only the energy of the gravita-

tional fields (of the wave and of the source bodies) and the

kinetic energy of the source bodies, the two partners of a

binary star system that, by means of fast rotation, shall be

the source of the gravitational wave, should increase—and

not decrease—the sum of their kinetic and potential energies

as a result of the emission of gravitational waves, which

would then lead to a higher orbit. But what we are told is just

the opposite: The sum of the kinetic energies and the poten-

tial energies of the two partners of the binary star system is

said to be diminished by the emission of gravitational waves,

resulting in a diminishing of the radius of the orbit.

F. The indispensability of “dark energy” in General
Relativity

a) If it is taken for granted that the sum of kinetic and

potential energy of a system of gravitating bodies is constant

over time, and if it is also taken for granted that the gravita-

tional field cannot have or give off any energy, it follows that

an increase in the total energy of a system goes along with an

appropriate decrease in some other form of energy (and not in

energy of a gravitational field). One should keep in mind that

the seat of potential energy of a test body is never in the test

body itself; when the potential is realized, energy disappears

elsewhere, e.g., in the interior of some field.

In our special case, however, one should note that the

other form of energy which is involved here comes into play

only when the falling test body hits the surface of the gravi-

tating mass, so that thermal energy is generated. As long as

the test body is in free fall, its kinetic energy—and hence its

mass—is the same as it was when the test body was at rest

outside of the gravity field, provided one is using floating

coordinates in the vicinity of a gravitating mass. In other

words: The mass of freely falling bodies does not increase,

quite different from the mass of a body that is gathering

speed in flat spacetime. The absence of any relativistic mass

of a body falling in a gravitational field has been acknowl-

edged by textbooks, but it has not been recognized that the

reason for this absence lies in the fact that space itself is in

accelerated motion near a gravitating mass.If, in contrast,

coordinates are used that do not participate in the flow of

space near massive objects (but which are immovable in the

frame of reference used), the lack of an increase in true

kinetic energy of the falling body is hidden from view, as the

freely falling body is gathering speed and is therefore
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increasing its apparent kinetic energy in that rigid frame of

reference.

No matter which of the two types of coordinates are

used, General Relativity thus cannot dispense of a “dark

energy reserve” for the description of everyday phenomena

in nature (including Newton’s apple). Given that the gravity

field holds no energy, the second term in Eq. (2) cannot, as

Einstein asserted, be an expression of the energy of the grav-

itational field (that is being converted into ordinary energy or

vice versa), but must be an expression of the energy of a

hidden and thus “dark” reservoir of energy.

The seat of that dark energy cannot be found in three-

dimensional space. Otherwise that energy would contribute to

the curvature of space and hence to the intensity of the gravi-

tational force. Instead, one cannot do without the assumption

of a fourth spatial dimension. It is in that fourth direction

where the bulk of all dark energy must be located.

Thereby Schr€odinger’s vision (cited above) of “new

foundations” of the energy conservation principle—that are

required as soon as one is realizing that the gravity field is

void of energy—is coming true.

b) Of course, in order to solve the task of quantifying the

amount of energy absorbed or given off by the reserve of

dark energy, one is free to act as if the gravity field were in

possession of a nonvanishing energy whose density is pro-

portional to the negative square of the gravitational intensity

in space. Nevertheless, one should always be aware of the

fact that during a Helmholtz-contraction of a hollow gravitat-

ing sphere (by which, in theory, an infinite amount of

mechanical work can be gained according to Newtonian

physics), the field-free (!) space in the interior does not, con-

trary to common belief, possess a gravitational field with an

infinite energy density. At that location, objects are rather in

communication with an inexhaustible reserve of dark energy.

c) The cosmological constant k, which has been cor-

rectly regarded as an expression of dark energy, stands for

nothing but that small fraction of dark energy which is not
located in the direction of a fourth spatial dimension.

G. The indispensability of dark energy in the limit of
Newtonian gravity

As regards the gravitational acceleration as a function of

r, there is no difference between Newtonian physics and

General Relativity [see Eq. (9)]. It is the difference between

r and R, and the difference between t and s that vanishes in

the Newtonian limit.

Both according to the Schwarzschild metric and

according to Newton’s law of gravitation, any closed-loop

integral of g ds is zero. Of course, the straight-path integral

of g ds along a radial distance is not zero. In Newtonian

physics, the amount of work gained on such a path (and

expressed by that integral) is said to be exactly compensated

by a loss in “potential energy.” But this does not convey any

more information than the phrase “any closed-loop integral

of g ds is zero” does. Instead, it is just another way of saying

the same thing.

In the 19th century, the notion of a “gravitational field”

was introduced into Newtonian physics. But Newton’s law

of gravitation did not disclose how the energy density of that

field should be quantified. Analogous to the electric or mag-

netic field, the energy density was supposed to be propor-

tional to the numerically positive square of the field intensity

g by some authors (for instance, by J. C. Maxwell and O.

Heaviside), but this led to unsurmountable difficulties, espe-

cially to a conflict with the principle of energy conservation,

unless a hidden energy reservoir would be introduced: If two

mutually attractive gravitating bodies move toward each other,

mechanical work is yielded, but not at the expense of the

numerically positive energy of the gravitational field. Instead,

the energy of the gravitational field is increased (!) due to the

postulated quadratic relationship between the energy density of

the field and its intensity. As O. Heaviside put it:18,ee)

“Now there is a magnetic problem in which we

have a kind of similarity of behavior, viz., when

currents in material circuits are allowed to attract

one another. Let, for completeness, the initial state

be one of infinitely wide separation of infinitely

small filamentary currents in closed circuits. Then,

on concentration to any other state, the work done

by the attractive forces is represented by the sum

of lH2/2, where l is the inductivity and H the

magnetic force. This has its equivalent in the

energy of motion of the circuits, or may be

imagined to be so converted, or else wasted by

friction, if we like. But, over and above this

energy, the same amount, the sum of lH2/2,

represents the energy of the magnetic field, which

can be got out of it in work. It was zero at the

beginning. Now, as Lord Kelvin showed, this

double work is accounted for by extra work in the

batteries or other sources required to maintain the

currents constant. (I have omitted reference to the

waste of energy due to electrical resistance, to

avoid complications.) In the gravitational case

there is a partial analogy, but the matter is all

along assumed to be incapable of variation, and

not to require any supply of energy to keep it

constant. If we asserted that ce2/2 was stored

energy [e is the intensity of the gravitational field,

c is a positive constant], then its double would be

the work done per unit volume by letting bodies

attract from infinity, without any apparent source.”

Most authors therefore (or for other reasons) believed

that the energy density of the gravitational field had to be pro-

portional to the numerically negative square of the field intensity

g. But then a contraction of a spherical shell built of ordinary

matter (Kelvin–Helmholtz-contraction) would, according to

Newton’s law of gravitation, be able to yield an infinite amount

of energy by harnessing the energy of a field-free volume of

space in the interior of the hollow sphere. This was indistin-

guishable from the postulate of a hidden reserve of energy in

field-free space equipped with an infinite energy density.

ee)O. Heaviside, “A gravitational and electromagnetic analogy,” The Electri-

cian 31, 281 and 282 (1893), also found in O. Heaviside, Electromagnetic-
Theory, Vol. 1, London 1898, pp. 461/462.
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If, on the basis of Newton’s law of gravitation, one

would have asserted (as a third option) that the gravitational

field holds no energy at all, the existence of a hidden energy

reservoir would have been indispensable in an obvious man-

ner right from the start.

Hence, no matter which of the three options regarding

the energy density of the gravitational field would have been

chosen, there would have been no way to avoid the postulate

of a hidden reservoir of energy in space on the basis of

Newton’s law of gravitation.

H. Means of empirically corroborating the hypothesis
of a hidden energy reservoir in the fourth spatial
dimension

The hypothesis of a harnessing of a hidden energy reser-

voir in the simple case of Newton’s apple may undergo an

empirical test. This test would consist in checking whether

Eq. (9), which is identical with Newton’s law of gravitation

(if r appearing in that law stands for circumference of a cir-

cle around the center of mass divided by 2p, and not for the

number of radially oriented meter sticks laid end to end), is

empirically correct for local observers even in the vicinity of

very heavy masses. If so, proof would thereby be obtained

for the postulate (shared by Wheeler, Thorne, and Misner)

that the gravitational field has no mass.

It should be noted that the general attitude (based on

Einstein’s remark cited above) is quite to the contrary.ff)

As the equivalence of mass and energy has been empiri-

cally corroborated already, it would thereby, i.e., by the

same token, be empirically proved that the gravitational field

around a spherical mass holds no energy.

In the face of the undisputed empirical fact that

Newton’s apple generates thermal energy when coming to

rest on the ground, the existence of a reservoir of energy hid-

den in a fourth spatial dimension would thereby be indirectly

proved, given that the energy which has turned up as thermal

energy cannot come from the gravitational field, and given

that the principle of local conservation of energy is correct.

It is worthwhile noticing that in recent years the exis-

tence of a hidden energy sink in the fourth spatial dimension

was attempted to be proved empirically in the Fermi

National Accelerator Laboratory (by a team led by G. Lands-

berg of Brown University), and in DESY’s electron-proton

collider in Germany, in a closely analogous manner. See K.

Tuttle:19,gg)

“Collision experiments carefully reconstruct all

particles emerging from a collision. A possible

sign of extra dimensions would be a collision in

which a particle—and hence energy—

‘disappeared,’ perhaps indicating a graviton

leaving our visible universe and entering extra

spatial dimensions—the megaverse.”

The existence of a hidden energy sink in the fourth spa-

tial dimension would thus have been proved indirectly but

compellingly by an observation which would have consti-

tuted an apparent violation of the principle of energy conser-

vation. A somewhat easier—though similar—way to prove

the existence of a hidden and thus “dark” energy reservoir in

the fourth spatial dimension consists—as has been described

above—in the testing of Newton’s law in the vicinity of very

heavy masses (with r that appears in Newton’s law standing

for circumference of a circle around the center of mass

divided by 2p, and not for the number of radially oriented

meter sticks laid end to end). A positive outcome will

constitute an apparent violation of the principle of

energy conservation, which will—in order to avoid such a

violation—compel us to accept a fourth spatial dimension,

quite similar to the test scenario of the collision experiments.

This empirical check of Newton’s law near very heavy

masses would also represent another test of General Relativ-

ity, since, in the case of a negative outcome, both Newton’s

law and General Relativity (whose predictions do not differ

from each other insofar) would be disproved.

But are we really in need of such an empirical corrobora-

tion? When accepting the fact that the existence of a hidden

energy reservoir in the fourth spatial dimension is a mathe-

matical consequence of Einstein’s field equation and of the

principle of local energy conservation, and given the fact

that these two principles have been successfully tested in

numerous experiments already, any further empirical test

can hardly be said to be indispensable.

I. The nature of weight felt by stationary objects in
gravity fields

a) For a distant observer who uses a rigid coordinate

system (frame of reference), a test body which is falling at

(r-dependent) escape velocity in a gravity field of a heavy

mass is hence stationary relative to a flowing space volume

element that surrounds the test body (while the test body is

not stationary relative to the rigid system of coordinates the

distant observer is using).

A test body freely falling at a velocity less than the

r-dependent escape velocity does not change its velocity rel-

ative to the moving space volume element by which it is sur-

rounded at any moment in time.

A test body sitting on the surface of the gravitating,

spherical mass is not experiencing a downward force of

gravity, but is experiencing upward intermolecular, repul-

sive forces from the surface on which it is sitting. These

upward, intermolecular forces (that are counteracted by the

inertia of the test body) do not manage, though, to set the

test body in motion with respect to the surface of

ff)As an example, see the entry “vacuum solutions” in the English Wikipe-

dia: “… this gravitational field energy itself produces more gravity. This

means that the gravitational field outside the Sun is a bit stronger according

to general relativity than it is according to Newton’s theory.”
gg)“The Search for Extra Dimensions,” Symmetry Magazine, published by

Fermilab/SLAC, Vol. II, Issue 10, December 2005/January 2006. See also

H. Reichenbach, op. cit., p. 275/281/282: “… the principle of action by con-

tact: causal effects cannot reach distant points of space without having previ-

ously passed through intermediate points. … This rule determines the

dimensionality of space … Let us assume that the three dimensions of space

are visualized in the customary fashion, and let us substitute a color for the

fourth dimension. … The fact that a closed three-dimensional surface no

longer encloses a spatial region will become clear from the following con-

sideration. If we lock a number of flies into a red glass globe, they may yet

escape: they may change their color to blue and are then able to penetrate

the red globe.”
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the spherical mass, but they do manage to set the test body

in accelerated motion relative to a space volume element

that is passing by.

The situation is analogous to an observer in a capsule

hundreds of millions of light years away that is connected to

planet Earth (and the Milky Way) by a long tether. Due to

the expansion of space, the tether is under permanent

mechanical tension, and the observer in the capsule feels a

force that he might interpret as gravity [his time s is

described in Eq. (12)]. The observer would be wrong,

though: It is not gravity that is acting on the capsule and its

contents, but the force exerted by the tether.

IV. DISCUSSION

But what if the test body is radially rising in free motion

in the gravity field at (r-dependent) escape velocity? In that

case, gravity in the reference frame of the distant observer

can only be transformed away by assuming the existence of

space volume elements that do not flow toward the gravitat-

ing mass, but move away from this mass (thereby reducing

their velocity, which is always equal to the r-dependent

escape velocity).

How can space flow toward the gravitating mass and

also move away from it? One should recall that Einstein

mentioned (in 1952) the possibility of numerous, different

velocities of space volumes as “logically unavoidable,” with-

out, however, providing physically relevant examples. If one

assumes that space volume elements are permanently flow-

ing toward the gravitating mass even when there is no test

body in the gravity field, one is compelled to rate the free

rise of space volume elements as being a result of a partial

time reversal.

There is no other way of transforming the gravitational

force away. The transforming away of the gravitational

force, in turn, is indispensable for explaining how the mass

that is freely rising in a gravitational field is being deceler-

ated without transferring energy to the gravitational field

(which is impossible due to its zero energy density) or to the

energy reservoir of some dark, decelerating force (which

would, in conflict with the relativity principle, lead—in the

reference frame of the rising mass—to a deformation of the

spherically symmetrical shape of the electric field the rising

mass shall be imagined to be in possession of).

A partial time reversal, that is, the encounter of the

“big arrow of time” with a much smaller one, is known in

principle. The existence of antimatter and also of hole con-

duction in semiconductors can be described in this fashion.

However, so far only phenomena that occur on the micro-
scopic scale have been candidates for representing “small

arrows of time.” This limitation is no longer justified. As a

consequence, the concept of a definite, uniform direction of

time as something intrinsic to the macroscopic objects is rig-

orously destroyed.

Since gravitation is not a true force, and since the gravi-

tational field has no energy (quite different from an electric

or magnetic field), it is hardly conceivable that, on the level

of quantum mechanics, gravitation is put into effect by par-

ticles, that is by gravitons.
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